咨询与建议

限定检索结果

文献类型

  • 109 篇 期刊文献
  • 98 篇 会议
  • 4 册 图书

馆藏范围

  • 211 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 145 篇 工学
    • 109 篇 计算机科学与技术...
    • 100 篇 软件工程
    • 38 篇 信息与通信工程
    • 35 篇 光学工程
    • 28 篇 生物工程
    • 19 篇 机械工程
    • 16 篇 生物医学工程(可授...
    • 15 篇 控制科学与工程
    • 9 篇 电气工程
    • 8 篇 化学工程与技术
    • 6 篇 仪器科学与技术
    • 6 篇 建筑学
    • 5 篇 土木工程
    • 4 篇 电子科学与技术(可...
    • 3 篇 测绘科学与技术
    • 3 篇 环境科学与工程(可...
  • 94 篇 理学
    • 43 篇 物理学
    • 35 篇 生物学
    • 25 篇 数学
    • 9 篇 统计学(可授理学、...
    • 8 篇 化学
    • 5 篇 海洋科学
    • 3 篇 系统科学
  • 40 篇 管理学
    • 25 篇 图书情报与档案管...
    • 19 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 7 篇 医学
    • 7 篇 临床医学
    • 6 篇 基础医学(可授医学...
    • 5 篇 药学(可授医学、理...
  • 5 篇 法学
    • 5 篇 社会学
  • 2 篇 经济学
  • 1 篇 农学
  • 1 篇 艺术学

主题

  • 14 篇 computer vision
  • 12 篇 pattern recognit...
  • 11 篇 convolution
  • 8 篇 face recognition
  • 8 篇 feature extracti...
  • 7 篇 image segmentati...
  • 7 篇 databases
  • 7 篇 training
  • 6 篇 machine vision
  • 6 篇 semantics
  • 5 篇 distillation
  • 5 篇 hidden markov mo...
  • 5 篇 laboratories
  • 5 篇 visualization
  • 5 篇 clustering algor...
  • 4 篇 computer science
  • 4 篇 object detection
  • 4 篇 pattern matching
  • 4 篇 large dataset
  • 4 篇 neural networks

机构

  • 19 篇 shanghai ai labo...
  • 17 篇 shenzhen key lab...
  • 15 篇 university of ch...
  • 14 篇 xiamen key labor...
  • 12 篇 sensetime resear...
  • 11 篇 shanghai artific...
  • 10 篇 department of co...
  • 9 篇 shenzhen key lab...
  • 8 篇 national laborat...
  • 7 篇 department of in...
  • 6 篇 shenzhen key lab...
  • 6 篇 the university o...
  • 6 篇 fujian key labor...
  • 6 篇 shenzhen key lab...
  • 6 篇 university of ma...
  • 6 篇 school of electr...
  • 5 篇 school of artifi...
  • 5 篇 shenzhen key lab...
  • 5 篇 school of artifi...
  • 5 篇 college of compu...

作者

  • 23 篇 qiao yu
  • 19 篇 liu xin
  • 13 篇 wang yali
  • 13 篇 kälviäinen heikk...
  • 12 篇 eerola tuomas
  • 10 篇 dong chao
  • 9 篇 chen xiangyu
  • 8 篇 lensu lasse
  • 8 篇 yu qiao
  • 8 篇 wu xiao-jun
  • 8 篇 kittler josef
  • 7 篇 ming dong
  • 7 篇 yu zitong
  • 7 篇 yue huanjing
  • 7 篇 yang jingyu
  • 6 篇 umapada pal
  • 6 篇 he junjun
  • 6 篇 li hongsheng
  • 6 篇 chao dong
  • 5 篇 kraft kaisa

语言

  • 200 篇 英文
  • 10 篇 其他
  • 1 篇 中文
检索条件"机构=Computer Vision and Pattern Recognition Laboratory"
211 条 记 录,以下是161-170 订阅
排序:
Comparison of appearance-based and geometry-based bubble detectors
Lecture Notes in Computer Science (including subseries Lectu...
收藏 引用
Lecture Notes in computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 2014年 8671卷 610-617页
作者: Strokina, Nataliya Juránek, Roman Eerola, Tuomas Lensu, Lasse Zemčik, Pavel Kälviäinen, Heikki Tampere University of Technology Department of Signal Processing P.O. Box 527 Tampere33101 Finland Brno University of Technology Department of Computer Graphics and Multimedia Brno Czech Republic Lappeenranta University of Technology Machine Vision and Pattern Recognition Laboratory P.O. Box 20 Lappeenranta53851 Finland
Bubble detection is a complicated tasks since varying lighting conditions changes considerably the appearance of bubbles in liquid. The two common techniques to detect circular objects such as bubbles, the geometry-ba... 详细信息
来源: 评论
DeSRA: Detect and Delete the Artifacts of GAN-based Real-World Super-Resolution Models
arXiv
收藏 引用
arXiv 2023年
作者: Xie, Liangbin Wang, Xintao Chen, Xiangyu Li, Gen Shan, Ying Zhou, Jiantao Dong, Chao State Key Laboratory of Internet of Things for Smart City University of Macau China Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences China ARC Lab Tencent PCG China Shanghai Artificial Intelligence Laboratory China Platform Technologies China
Image super-resolution (SR) with generative adversarial networks (GAN) has achieved great success in restoring realistic details. However, it is notorious that GAN-based SR models will inevitably produce unpleasant an... 详细信息
来源: 评论
FWLBP: A scale invariant descriptor for texture classification
arXiv
收藏 引用
arXiv 2018年
作者: Roy, Swalpa Kumar Bhattacharya, Nilavra Chanda, Bhabatosh Chaudhuri, Bidyut B. Ghosh, Dipak Kumar Optical Character Recognition Laboratory Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata700108 India School of Information University of Texas AustinTX78712 United States Image Processing Laboratory Electronics and Communication Sciences Unit Indian Statistical Institute Kolkata700108 India Department of Electronics and Communication Engineering National Institute of Technology Rourkela Rourkela769008 India
In this paper we propose a novel texture descriptor called Fractal Weighted Local Binary pattern (FWLBP). The fractal dimension (FD) measure is relatively invariant to scale-changes, and presents a good correlation wi... 详细信息
来源: 评论
UDC-UNet: Under-Display Camera Image Restoration via U-shape Dynamic Network
arXiv
收藏 引用
arXiv 2022年
作者: Liu, Xina Hu, Jinfan Chen, Xiangyu Dong, Chao Shenzhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shanghai China University of Chinese Academy of Sciences Shanghai China University of Macau Shanghai China Shanghai AI Laboratory Shanghai China
Under-Display Camera (UDC) has been widely exploited to help smartphones realize full-screen displays. However, as the screen could inevitably affect the light propagation process, the images captured by the UDC syste... 详细信息
来源: 评论
NORPPA: NOvel Ringed seal re-identification by Pelage pattern Aggregation
arXiv
收藏 引用
arXiv 2022年
作者: Nepovinnykh, Ekaterina Chelak, Ilia Eerola, Tuomas Kälviäinen, Heikki Computer Vision and Pattern Recognition Laboratory Department of Computational Engineering School of Engineering Science Lappeenranta-Lahti University of Technology Lut P.O.Box 20 Lappeenranta53851 Finland Department of Computer Science Faculty of Science University of Helsinki P.O. Box 4 Helsinki00100 Finland
We propose a method for Saimaa ringed seal (Pusa hispida saimensis) re-identification. Access to large image volumes through camera trapping and crowdsourcing provides novel possibilities for animal monitoring and con... 详细信息
来源: 评论
Evaluation of feature sensitivity to training data inaccuracy in detection of retinal lesions
Evaluation of feature sensitivity to training data inaccurac...
收藏 引用
Workshops on Image Processing Theory, Tools and Applications, IPTA
作者: Lauri Laaksonen Antti Hannuksela Ela Claridge Pauli Fält Markku Hauta-Kasari Hannu Uusitalo Lasse Lensu Machine Vision and Pattern Recognition Laboratory Lappeenranta university of Technology Lappeenranta Finland School of Computer Science The University of Birmingham United Kingdom School of Computing University of Eastern Finland Finland Department of Ophthalmology University of Tampere Finland TAUH Eye Center Tampere University Hospital Finland
computer aided diagnostic and segmentation tools have become increasingly important in reducing the workload of medical experts performing diagnosis, monitoring and documentation of various eye diseases such as age-re... 详细信息
来源: 评论
The devil is in the channels: Mutual-channel loss for fine-grained image classification
arXiv
收藏 引用
arXiv 2020年
作者: Chang, Dongliang Ding, Yifeng Xie, Jiyang Bhunia, Ayan Kumar Li, Xiaoxu Ma, Zhanyu Wu, Ming Guo, Jun Song, Yi-Zhe Pattern Recognition and Intelligent System Laboratory School of Information and Communication Engineering Beijing University of Posts and Telecommunications Beijing100876 China School of Computer and Communication Lanzhou University of Technology Lanzhou730050 China Centre for Vision Speech and Signal Processing University of Surrey London United Kingdom
The key to solving fine-grained image categorization is finding discriminate and local regions that correspond to subtle visual traits. Great strides have been made, with complex networks designed specifically to lear... 详细信息
来源: 评论
MorphMLP: An Efficient MLP-Like Backbone for Spatial-Temporal Representation Learning
arXiv
收藏 引用
arXiv 2021年
作者: Zhang, David Junhao Li, Kunchang Wang, Yali Chen, Yunpeng Chandra, Shashwat Qiao, Yu Liu, Luoqi Shou, Mike Zheng National University of Singapore Singapore Meitu Inc China ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences China Shanghai AI Laboratory China
Recently, MLP-Like networks have been revived for image recognition. However, whether it is possible to build a generic MLP-Like architecture on video domain has not been explored, due to complex spatial-temporal mode... 详细信息
来源: 评论
IFAST: Weakly Supervised Interpretable Face Anti-spoofing from Single-shot Binocular NIR Images
arXiv
收藏 引用
arXiv 2023年
作者: Huang, Jiancheng Zhou, Donghao Chen, Shifeng ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen518055 China University of Chinese Academy of Sciences Beijing China Guangdong Provincial Key Laboratory of Computer Vision and Virtual Reality Technology Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen518055 China The Chinese University of Hong Kong Hong Kong
Single-shot face anti-spoofing (FAS) is a key technique for securing face recognition systems, and it requires only static images as input. However, single-shot FAS remains a challenging and under-explored problem due... 详细信息
来源: 评论
Regional attention with architecture-rebuilt 3D network for RGB-D gesture recognition
arXiv
收藏 引用
arXiv 2021年
作者: Zhou, Benjia Li, Yunan Wan, Jun Macau University of Science and Technology China National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences Beijing China School of Computer Science and Technology Xidian Univeristy China Xi'an Key Laboratory of Big Data and Intelligent Vision China School of Artificial Intelligence University of Chinese Academy of Sciences Beijing China
Human gesture recognition has drawn much attention in the area of computer vision. However, the performance of gesture recognition is always influenced by some gesture-irrelevant factors like the background and the cl... 详细信息
来源: 评论