咨询与建议

限定检索结果

文献类型

  • 108 篇 期刊文献
  • 98 篇 会议
  • 4 册 图书

馆藏范围

  • 210 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 145 篇 工学
    • 109 篇 计算机科学与技术...
    • 100 篇 软件工程
    • 38 篇 信息与通信工程
    • 35 篇 光学工程
    • 28 篇 生物工程
    • 19 篇 机械工程
    • 16 篇 生物医学工程(可授...
    • 15 篇 控制科学与工程
    • 9 篇 电气工程
    • 8 篇 化学工程与技术
    • 6 篇 仪器科学与技术
    • 6 篇 建筑学
    • 5 篇 土木工程
    • 4 篇 电子科学与技术(可...
    • 3 篇 测绘科学与技术
    • 3 篇 环境科学与工程(可...
  • 94 篇 理学
    • 43 篇 物理学
    • 35 篇 生物学
    • 25 篇 数学
    • 9 篇 统计学(可授理学、...
    • 8 篇 化学
    • 5 篇 海洋科学
    • 3 篇 系统科学
  • 40 篇 管理学
    • 25 篇 图书情报与档案管...
    • 19 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 7 篇 医学
    • 7 篇 临床医学
    • 6 篇 基础医学(可授医学...
    • 5 篇 药学(可授医学、理...
  • 5 篇 法学
    • 5 篇 社会学
  • 2 篇 经济学
  • 1 篇 农学
  • 1 篇 艺术学

主题

  • 14 篇 computer vision
  • 12 篇 pattern recognit...
  • 11 篇 convolution
  • 8 篇 face recognition
  • 8 篇 feature extracti...
  • 7 篇 image segmentati...
  • 7 篇 databases
  • 7 篇 training
  • 6 篇 machine vision
  • 6 篇 semantics
  • 5 篇 distillation
  • 5 篇 hidden markov mo...
  • 5 篇 laboratories
  • 5 篇 visualization
  • 5 篇 clustering algor...
  • 4 篇 computer science
  • 4 篇 object detection
  • 4 篇 pattern matching
  • 4 篇 large dataset
  • 4 篇 neural networks

机构

  • 19 篇 shanghai ai labo...
  • 17 篇 shenzhen key lab...
  • 15 篇 university of ch...
  • 13 篇 xiamen key labor...
  • 12 篇 sensetime resear...
  • 11 篇 shanghai artific...
  • 9 篇 department of co...
  • 9 篇 shenzhen key lab...
  • 8 篇 national laborat...
  • 7 篇 department of in...
  • 6 篇 shenzhen key lab...
  • 6 篇 the university o...
  • 6 篇 fujian key labor...
  • 6 篇 shenzhen key lab...
  • 6 篇 university of ma...
  • 6 篇 school of electr...
  • 5 篇 school of artifi...
  • 5 篇 shenzhen key lab...
  • 5 篇 school of artifi...
  • 5 篇 college of compu...

作者

  • 23 篇 qiao yu
  • 19 篇 liu xin
  • 13 篇 wang yali
  • 13 篇 kälviäinen heikk...
  • 12 篇 eerola tuomas
  • 10 篇 dong chao
  • 9 篇 chen xiangyu
  • 8 篇 lensu lasse
  • 8 篇 yu qiao
  • 8 篇 wu xiao-jun
  • 8 篇 kittler josef
  • 7 篇 ming dong
  • 7 篇 yu zitong
  • 7 篇 yue huanjing
  • 7 篇 yang jingyu
  • 6 篇 umapada pal
  • 6 篇 he junjun
  • 6 篇 li hongsheng
  • 6 篇 chao dong
  • 5 篇 kraft kaisa

语言

  • 199 篇 英文
  • 10 篇 其他
  • 1 篇 中文
检索条件"机构=Computer Vision and Pattern Recognition Laboratory"
210 条 记 录,以下是171-180 订阅
排序:
Riemannian Self-Attention Mechanism for SPD Networks
arXiv
收藏 引用
arXiv 2023年
作者: Wang, Rui Wu, Xiao-Jun Li, Hui Kittler, Josef School of Artificial Intelligence and Computer Science Jiangnan University Wuxi214122 China Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational Intelligence Jiangnan University China Centre for Vision Speech and Signal Processing University of Surrey GuildfordGU2 7XH United Kingdom
Symmetric positive definite (SPD) matrix has been demonstrated to be an effective feature descriptor in many scientific areas, as it can encode spatiotemporal statistics of the data adequately on a curved Riemannian m... 详细信息
来源: 评论
Real-time 3D human pose estimation without skeletal a priori structures
收藏 引用
Image and vision Computing 2023年 132卷
作者: Bai, Guihu Luo, Yanmin Pan, Xueliang Wang, Jia Guo, Jing-Ming College of Computer Science and Technology Huaqiao University 668 Jimei Avenue Jimei District Fujian Xiamen361021 China Key Laboratory for Computer Vision and Pattern Recognition Huaqiao University 668 Jimei Avenue Jimei District Fujian Xiamen361021 China The Department of Electrical Engineering National Taiwan University of Science and Technology Taipei10607 Taiwan
This study is about real-time 2D-3D human pose estimation without using the a priori structure of the skeleton and with a low number of parameters for regression tasks. Current graph convolution-based 3D human pose ta... 详细信息
来源: 评论
Feature refinement: An expression-specific feature learning and fusion method for micro-expression recognition
arXiv
收藏 引用
arXiv 2021年
作者: Zhou, Ling Mao, Qirong Huang, Xiaohua Zhang, Feifei Zhang, Zhihong School of Computer Science and Communication Engineering Jiangsu University ZhenjiangJiangsu212013 China School of Computer Engineering Nanjing Institute of Technology China National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences Beijing100190 China Xiamen University Xiamen China Center for Machine Vision and Signal Analysis University of Oulu Finland
Micro-Expression recognition has become challenging, as it is extremely difficult to extract the subtle facial changes of micro-expressions. Recently, several approaches proposed several expression-shared features alg... 详细信息
来源: 评论
Identity-free Artificial Emotional Intelligence via Micro-Gesture Understanding
arXiv
收藏 引用
arXiv 2024年
作者: Gao, Rong Liu, Xin Xing, Bohao Yu, Zitong Schuller, Bjorn W. Kälviäinen, Heikki Computer Vision and Pattern Recognition Laboratory School of Engineering Sciences Lappeenranta-Lahti University of Technology LUT Finland School of Computing and Information Technology Great Bay University China Group on Language Audio & Music Imperial College London United Kingdom School of Medicine and Health Technical University of Munich Germany
In this work, we focus on a special group of human body language — the micro-gesture (MG), which differs from the range of ordinary illustrative gestures in that they are not intentional behaviors performed to convey... 详细信息
来源: 评论
A new journey from SDRTV to HDRTV
arXiv
收藏 引用
arXiv 2021年
作者: Chen, Xiangyu Zhang, Zhengwen Ren, Jimmy S. Tian, Lynhoo Qiao, Yu Dong, Chao ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shanghai China SenseTime Research Shanghai China Qing Yuan Research Institute Shanghai Jiao Tong University Shanghai China Shanghai AI Laboratory Shanghai China
Nowadays modern displays are capable to render video content with high dynamic range (HDR) and wide color gamut (WCG). However, most available resources are still in standard dynamic range (SDR). Therefore, there is a... 详细信息
来源: 评论
Masked Image Training for Generalizable Deep Image Denoising
Masked Image Training for Generalizable Deep Image Denoising
收藏 引用
Conference on computer vision and pattern recognition (CVPR)
作者: Haoyu Chen Jinjin Gu Yihao Liu Salma Abdel Magid Chao Dong Qiong Wang Hanspeter Pfister Lei Zhu The Hong Kong University of Science and Technology (Guangzhou) Shanghai AI Lab The University of Sydney ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences University of Chinese Academy of Sciences Harvard University Guangdong Provincial Key Laboratory of Computer Vision and Virtual Reality Technology Shenzhen Institute of Advanced Technology Chinese Academy of Sciences The Hong Kong University of Science and Technology
When capturing and storing images, devices inevitably introduce noise. Reducing this noise is a critical task called image denoising. Deep learning has become the de facto method for image denoising, especially with t...
来源: 评论
DreamNet: A Deep Riemannian Network based on SPD Manifold Learning for Visual Classification
arXiv
收藏 引用
arXiv 2022年
作者: Wang, Rui Wu, Xiao-Jun Chen, Ziheng Xu, Tianyang Kittler, Josef School of Artificial Intelligence and Computer Science Jiangnan University Wuxi214122 China Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational Intelligence Jiangnan University China Centre for Vision Speech and Signal Processing University of Surrey GuildfordGU2 7XH United Kingdom School of Artificial Intelligence and Computer Science Jiangnan University China
Image set-based visual classification methods have achieved remarkable performance, via characterising the image set in terms of a non-singular covariance matrix on a symmetric positive definite (SPD) manifold. To ada... 详细信息
来源: 评论
Cross Domain Object Detection by Target-Perceived Dual Branch Distillation
arXiv
收藏 引用
arXiv 2022年
作者: He, Mengzhe Wang, Yali Wu, Jiaxi Wang, Yiru Li, Hanqing Li, Bo Gan, Weihao Wu, Wei Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences China SenseTime Research University of Chinese Academy of Science China Shanghai AI Laboratory Shanghai China Beihang University China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society China
Cross domain object detection is a realistic and challenging task in the wild. It suffers from performance degradation due to large shift of data distributions and lack of instance-level annotations in the target doma... 详细信息
来源: 评论
A Simple yet Effective Network based on vision Transformer for Camouflaged Object and Salient Object Detection
arXiv
收藏 引用
arXiv 2024年
作者: Hao, Chao Yu, Zitong Liu, Xin Xu, Jun Yue, Huanjing Yang, Jingyu The School of Electrical and Information Engineering Tianjin University Tianjin300072 China The School of Computing and Information Technology Great Bay University Dongguan523000 China The Computer Vision and Pattern Recognition Laboratory Lappeenranta-Lahti University of Technology LUT Lappeenranta53850 Finland The School of Statistics and Data Science Nankai University Tianjin300072 China
Camouflaged object detection (COD) and salient object detection (SOD) are two distinct yet closely-related computer vision tasks widely studied during the past decades. Though sharing the same purpose of segmenting an... 详细信息
来源: 评论
When Face recognition Meets with Deep Learning: An Evaluation of Convolutional Neural Networks for Face recognition
When Face Recognition Meets with Deep Learning: An Evaluatio...
收藏 引用
International Conference on computer vision Workshops (ICCV Workshops)
作者: Guosheng Hu Yongxin Yang Dong Yi Josef Kittler William Christmas Stan Z. Li Timothy Hospedales Centre for Vision Speech and Signal Processing University of Surrey UK Indicates equal contribution LEAR team Inria Grenoble Rhone-Alpes Montbonnot France Electronic Engineering and Computer Science Queen Mary University of London UK Chinese Academy of Sciences Center for Biometrics and Security Research & National Laboratory of Pattern Recognition China
Deep learning, in particular Convolutional Neural Network (CNN), has achieved promising results in face recognition recently. However, it remains an open question: why CNNs work well and how to design a 'good'... 详细信息
来源: 评论