咨询与建议

限定检索结果

文献类型

  • 107 篇 期刊文献
  • 98 篇 会议
  • 4 册 图书

馆藏范围

  • 209 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 143 篇 工学
    • 108 篇 计算机科学与技术...
    • 99 篇 软件工程
    • 37 篇 信息与通信工程
    • 34 篇 光学工程
    • 27 篇 生物工程
    • 19 篇 机械工程
    • 16 篇 控制科学与工程
    • 15 篇 生物医学工程(可授...
    • 8 篇 化学工程与技术
    • 7 篇 电气工程
    • 6 篇 仪器科学与技术
    • 6 篇 建筑学
    • 5 篇 土木工程
    • 4 篇 电子科学与技术(可...
    • 3 篇 测绘科学与技术
    • 3 篇 环境科学与工程(可...
  • 92 篇 理学
    • 42 篇 物理学
    • 34 篇 生物学
    • 25 篇 数学
    • 9 篇 统计学(可授理学、...
    • 8 篇 化学
    • 5 篇 海洋科学
    • 3 篇 系统科学
  • 39 篇 管理学
    • 24 篇 图书情报与档案管...
    • 19 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 7 篇 医学
    • 7 篇 临床医学
    • 6 篇 基础医学(可授医学...
    • 5 篇 药学(可授医学、理...
  • 5 篇 法学
    • 5 篇 社会学
  • 2 篇 经济学
  • 1 篇 农学
  • 1 篇 艺术学

主题

  • 14 篇 computer vision
  • 12 篇 pattern recognit...
  • 11 篇 convolution
  • 8 篇 face recognition
  • 8 篇 feature extracti...
  • 8 篇 training
  • 7 篇 image segmentati...
  • 7 篇 databases
  • 7 篇 semantics
  • 6 篇 machine vision
  • 5 篇 distillation
  • 5 篇 hidden markov mo...
  • 5 篇 laboratories
  • 5 篇 visualization
  • 5 篇 clustering algor...
  • 4 篇 computer science
  • 4 篇 object detection
  • 4 篇 pattern matching
  • 4 篇 large dataset
  • 4 篇 neural networks

机构

  • 19 篇 shanghai ai labo...
  • 17 篇 shenzhen key lab...
  • 15 篇 university of ch...
  • 14 篇 xiamen key labor...
  • 11 篇 sensetime resear...
  • 11 篇 shanghai artific...
  • 10 篇 department of co...
  • 9 篇 shenzhen key lab...
  • 8 篇 national laborat...
  • 7 篇 department of in...
  • 6 篇 shenzhen key lab...
  • 6 篇 the university o...
  • 6 篇 fujian key labor...
  • 6 篇 shenzhen key lab...
  • 6 篇 university of ma...
  • 6 篇 school of electr...
  • 5 篇 school of artifi...
  • 5 篇 shenzhen key lab...
  • 5 篇 school of artifi...
  • 5 篇 college of compu...

作者

  • 22 篇 qiao yu
  • 19 篇 liu xin
  • 13 篇 wang yali
  • 13 篇 kälviäinen heikk...
  • 12 篇 eerola tuomas
  • 10 篇 dong chao
  • 9 篇 chen xiangyu
  • 8 篇 lensu lasse
  • 8 篇 yu qiao
  • 8 篇 wu xiao-jun
  • 8 篇 kittler josef
  • 7 篇 ming dong
  • 7 篇 yu zitong
  • 7 篇 yue huanjing
  • 7 篇 yang jingyu
  • 6 篇 umapada pal
  • 6 篇 he junjun
  • 6 篇 li hongsheng
  • 6 篇 chao dong
  • 5 篇 kraft kaisa

语言

  • 197 篇 英文
  • 10 篇 其他
  • 2 篇 中文
检索条件"机构=Computer Vision and Pattern Recognition Laboratory"
209 条 记 录,以下是181-190 订阅
AngularGrad: A New Optimization Technique for Angular Convergence of Convolutional Neural Networks
arXiv
收藏 引用
arXiv 2021年
作者: Roy, Swalpa Kumar Paoletti, Mercedes E. Haut, Juan M. Dubey, Shiv Ram Kar, Purbayan Plaza, Antonio Chaudhuri, Bidyut B. The Computer Science and Engineering Alipurduar Government Engineering and Management College 736206 India The Hyperspectral Computing Laboratory Department of Technology of Computers and Communications University of Extremadura Cáceres10003 Spain The Computer Vision and Biometrics Lab Indian Institute of Information Technology Prayagraj Uttar Pradesh Allahabad211015 India The Media Analysis Group Sony Research India Private Limited Karnataka Bangalore560103 India The Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata700108 India
Convolutional neural networks (CNNs) are trained using stochastic gradient descent (SGD)-based optimizers. Recently, the adaptive moment estimation (Adam) optimizer has become very popular due to its adaptive momentum... 详细信息
来源: 评论
Machine Learning and computer vision Techniques in Continuous Beehive Monitoring Applications: A Survey
arXiv
收藏 引用
arXiv 2022年
作者: Bilik, Simon Zemcik, Tomas Kratochvila, Lukas Ricanek, Dominik Richter, Miloslav Zambanini, Sebastian Horak, Karel Department of Control and Instrumentation Faculty of Electrical Engineering and Communication Brno University of Technology Technická 3058/10 Brno61600 Czech Republic Computer Vision and Pattern Recognition Laboratory Department of Computational Engineering Lappeenranta-Lahti University of Technology LUT Yliopistonkatu 34 Lappeenranta53850 Finland Computer Vision Lab Institute of Visual Computing & Human-Centered Technology Faculty of Informatics TU Wien Favoritenstr. 9/193-1 ViennaA-1040 Austria
Wide use and availability of machine learning and computer vision techniques allows development of relatively complex monitoring systems in many domains. Besides the traditional industrial domain, new applications app... 详细信息
来源: 评论
Self-slimmed vision Transformer
arXiv
收藏 引用
arXiv 2021年
作者: Zong, Zhuofan Li, Kunchang Song, Guanglu Wang, Yali Qiao, Yu Leng, Biao Liu, Yu School of Computer Science and Engineering Beihang University China SenseTime Research China ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society China Shanghai AI Laboratory China
vision transformers (ViTs) have become the popular structures and outperformed convolutional neural networks (CNNs) on various vision tasks. However, such powerful transformers bring a huge computation burden, because... 详细信息
来源: 评论
Hierarchical Local Global Transformer for Point Clouds Analysis
SSRN
收藏 引用
SSRN 2023年
作者: Li, Dilong Zheng, Shenghong Chen, Ziyi Li, Xiang Wang, Lanying Du, Jixiang College of Computer Science and Technology Fujian Key Laboratory of Big Data Intelligence and Security Xiamen Key Laboratory of Computer Vision and Pattern Recognition Xiamen Key Laboratory of Data Security and Blockchain Technology Huaqiao University FJ Xiamen361021 China School of Economics and Finance Huaqiao University FJ Quanzhou362021 China Department of Geography and Environmental Management University of Waterloo WaterlooONN2L 3G1 Canada
Transformer networks have demonstrated remarkable performance in point cloud analysis. However, achieving a balance between local regional context and global long-range context learning remains a significant challenge... 详细信息
来源: 评论
Multi-scale Promoted Self-adjusting Correlation Learning for Facial Action Unit Detection
收藏 引用
IEEE Transactions on Affective Computing 2024年 第2期16卷 697-711页
作者: Liu, Xin Yuan, Kaishen Niu, Xuesong Shi, Jingang Yu, Zitong Yue, Huanjing Yang, Jingyu Tianjin University School of Electrical and Information Engineering Tianjin300072 China Lappeenranta-Lahti University of Technology LUT Computer Vision and Pattern Recognition Laboratory School of Engineering Science Lappeenranta53850 Finland Beijing Institute for General Artificial Intelligence Beijing100080 China Xi'an Jiaotong University School of Software Engineering Xi'an710049 China Great Bay University Dongguan523000 China
Facial Action Unit (AU) detection is a crucial task in affective computing and social robotics as it helps to identify emotions expressed through facial expressions. Anatomically, there are innumerable correlations be... 详细信息
来源: 评论
VideoPipe 2022 Challenge: Real-World Video Understanding for Urban Pipe Inspection
arXiv
收藏 引用
arXiv 2022年
作者: Liu, Yi Zhang, Xuan Li, Ying Liang, Guixin Jiang, Yabing Qiu, Lixia Tang, Haiping Xie, Fei Yao, Wei Dai, Yi Qiao, Yu Wang, Yali ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences China Shenzhen Bwell Technology Co. Ltd China Shenzhen Longhua Drainage Co. Ltd China Shanghai AI Laboratory Shanghai China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society China
Video understanding is an important problem in computer vision. Currently, the well-studied task in this research is human action recognition, where the clips are manually trimmed from the long videos, and a single cl... 详细信息
来源: 评论
UniFormer: Unifying Convolution and Self-attention for Visual recognition
arXiv
收藏 引用
arXiv 2022年
作者: Li, Kunchang Wang, Yali Zhang, Junhao Gao, Peng Song, Guanglu Liu, Yu Li, Hongsheng Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen518055 China University of Chinese Academy of Sciences Beijing100049 China Shanghai Artificial Intelligence Laboratory Shanghai200232 China National University of Singapore Singapore Shanghai Artificial Intelligence Laboratory China SenseTime Research China The Chinese University of Hong Kong Hong Kong
It is a challenging task to learn discriminative representation from images and videos, due to large local redundancy and complex global dependency in these visual data. Convolution neural networks (CNNs) and vision t... 详细信息
来源: 评论
CASIA-SURF: A Large-scale Multi-modal Benchmark for Face Anti-spoofing
arXiv
收藏 引用
arXiv 2019年
作者: Zhang, Shifeng Liu, Ajian Wan, Jun Liang, Yanyan Guo, Guogong Escalera, Sergio Escalante, Hugo Jair Li, Stan Z. National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences University of Chinese Academy of Sciences Beijing China Macau University of Science and Technology Macau China Institute of Deep Learning Baidu Research and National Engineering Laboratory for Deep Learning Technology and Application Universitat de Barcelona Computer Vision Center Barcelona Catalonia Instituto Nacional de Astrofsica Ptica y Electrnica Puebla72840 Mexico
Face anti-spoofing is essential to prevent face recognition systems from a security breach. Much of the progresses have been made by the availability of face anti-spoofing benchmark datasets in recent years. However, ... 详细信息
来源: 评论
ICDAR2019 Robust Reading Challenge on Multi-lingual Scene Text Detection and recognition — RRC-MLT-2019
ICDAR2019 Robust Reading Challenge on Multi-lingual Scene Te...
收藏 引用
International Conference on Document Analysis and recognition
作者: Nibal Nayef Yash Patel Michal Busta Pinaki Nath Chowdhury Dimosthenis Karatzas Wafa Khlif Jiri Matas Umapada Pal Jean-Christophe Burie Cheng-lin Liu Jean-Marc Ogier no affiliation The Robotics Institute Carnegie Mellon Universiry Pittsburgh USA Department of Cybernetics Czech Technical University Prague Czech Republic CVPR unit Indian Statistical Institute India Computer Vision Center Universitat Autònoma de Barcelona Spain L3i Laboratory University of La Rochelle France National Laboratory of Pattern Recognition Institute of Automation of Chinese Academy of Sciences China
With the growing cosmopolitan culture of modern cities, the need of robust Multi-Lingual scene Text (MLT) detection and recognition systems has never been more immense. With the goal to systematically benchmark and pu... 详细信息
来源: 评论
Affine Non-negative Collaborative Representation Based pattern Classification
arXiv
收藏 引用
arXiv 2020年
作者: Yin, He-Feng Wu, Xiao-Jun Feng, Zhen-Hua Kittler, Josef School of Artificial Intelligence and Computer Science Jiangnan University Wuxi214122 China Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational Intelligence Jiangnan University Wuxi214122 China Department of Computer Science University of Surrey GuildfordGU2 7XH United Kingdom Centre for Vision Speech and Signal Processing University of Surrey GuildfordGU2 7XH United Kingdom
—During the past decade, representation-based classification methods have received considerable attention in pattern recognition. In particular, the recently proposed non-negative representation based classification ... 详细信息
来源: 评论