咨询与建议

限定检索结果

文献类型

  • 108 篇 期刊文献
  • 98 篇 会议
  • 4 册 图书

馆藏范围

  • 210 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 145 篇 工学
    • 109 篇 计算机科学与技术...
    • 100 篇 软件工程
    • 38 篇 信息与通信工程
    • 35 篇 光学工程
    • 28 篇 生物工程
    • 19 篇 机械工程
    • 16 篇 生物医学工程(可授...
    • 15 篇 控制科学与工程
    • 9 篇 电气工程
    • 8 篇 化学工程与技术
    • 6 篇 仪器科学与技术
    • 6 篇 建筑学
    • 5 篇 土木工程
    • 4 篇 电子科学与技术(可...
    • 3 篇 测绘科学与技术
    • 3 篇 环境科学与工程(可...
  • 94 篇 理学
    • 43 篇 物理学
    • 35 篇 生物学
    • 25 篇 数学
    • 9 篇 统计学(可授理学、...
    • 8 篇 化学
    • 5 篇 海洋科学
    • 3 篇 系统科学
  • 40 篇 管理学
    • 25 篇 图书情报与档案管...
    • 19 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 7 篇 医学
    • 7 篇 临床医学
    • 6 篇 基础医学(可授医学...
    • 5 篇 药学(可授医学、理...
  • 5 篇 法学
    • 5 篇 社会学
  • 2 篇 经济学
  • 1 篇 农学
  • 1 篇 艺术学

主题

  • 14 篇 computer vision
  • 12 篇 pattern recognit...
  • 11 篇 convolution
  • 8 篇 face recognition
  • 8 篇 feature extracti...
  • 7 篇 image segmentati...
  • 7 篇 databases
  • 7 篇 training
  • 6 篇 machine vision
  • 6 篇 semantics
  • 5 篇 distillation
  • 5 篇 hidden markov mo...
  • 5 篇 laboratories
  • 5 篇 visualization
  • 5 篇 clustering algor...
  • 4 篇 computer science
  • 4 篇 object detection
  • 4 篇 pattern matching
  • 4 篇 large dataset
  • 4 篇 neural networks

机构

  • 19 篇 shanghai ai labo...
  • 17 篇 shenzhen key lab...
  • 15 篇 university of ch...
  • 13 篇 xiamen key labor...
  • 12 篇 sensetime resear...
  • 11 篇 shanghai artific...
  • 9 篇 department of co...
  • 9 篇 shenzhen key lab...
  • 8 篇 national laborat...
  • 7 篇 department of in...
  • 6 篇 shenzhen key lab...
  • 6 篇 the university o...
  • 6 篇 fujian key labor...
  • 6 篇 shenzhen key lab...
  • 6 篇 university of ma...
  • 6 篇 school of electr...
  • 5 篇 school of artifi...
  • 5 篇 shenzhen key lab...
  • 5 篇 school of artifi...
  • 5 篇 college of compu...

作者

  • 23 篇 qiao yu
  • 19 篇 liu xin
  • 13 篇 wang yali
  • 13 篇 kälviäinen heikk...
  • 12 篇 eerola tuomas
  • 10 篇 dong chao
  • 9 篇 chen xiangyu
  • 8 篇 lensu lasse
  • 8 篇 yu qiao
  • 8 篇 wu xiao-jun
  • 8 篇 kittler josef
  • 7 篇 ming dong
  • 7 篇 yu zitong
  • 7 篇 yue huanjing
  • 7 篇 yang jingyu
  • 6 篇 umapada pal
  • 6 篇 he junjun
  • 6 篇 li hongsheng
  • 6 篇 chao dong
  • 5 篇 kraft kaisa

语言

  • 199 篇 英文
  • 10 篇 其他
  • 1 篇 中文
检索条件"机构=Computer Vision and Pattern Recognition Laboratory"
210 条 记 录,以下是41-50 订阅
排序:
Minimizing the topological structure of line images  7th
Minimizing the topological structure of line images
收藏 引用
7th Joint IAPR International Workshop on Structural and Syntactic pattern recognition, SSPR 1998 and 2nd International Workshop on Statistical Techniques in pattern recognition, SPR 1998
作者: Kropatsch, Walter G. Burge, Mark Vienna University of Technology Institute of Automation 183/2 Pattern Recognition and Image Processing Group Treitlstr.3 WienA-1040 Austria Johannes Kepler University Institute of Systems Science Computer Vision Laboratory LinzA-4040 Austria
We present a new algorithm based on Dual Graph Contraction (DGC) to transform the Run Graph into its Minimum Line Property Preserving (MLPP) form which, when implemented in parallel, requires O(log(longestcurve)) step... 详细信息
来源: 评论
Robust Pedestrian detection for semi-automatic construction of a crowded person re-identification dataset  1
收藏 引用
10th International Conference on Articulated Motion and Deformable Objects, AMDO 2018
作者: Huang, Zengxi Feng, Zhen-Hua Yan, Fei Kittler, Josef Wu, Xiao-Jun School of Computer and Software Engineering Xihua University Chengdu China Centre for Vision Speech and Signal Processing University of Surrey Guildford United Kingdom Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Machine Intelligence Jiangnan University Wuxi China
The problem of re-identification of people in a crowd commonly arises in real application scenarios, yet it has received less attention than it deserves. To facilitate research focusing on this problem, we have embark... 详细信息
来源: 评论
Evaluation of Unconditioned Deep Generative Synthesis of Retinal Images  20th
Evaluation of Unconditioned Deep Generative Synthesis of Ret...
收藏 引用
20th International Conference on Advanced Concepts for Intelligent vision Systems, ACIVS 2020
作者: Kaplan, Sinan Lensu, Lasse Laaksonen, Lauri Uusitalo, Hannu Computer Vision and Pattern Recognition Laboratory Lappeenranta-Lahti University of Technology LUT P.O. Box 20 Lappeenranta53850 Finland Department of Ophthalmology Faculty of Health and Biotechnology Tampere University and Tays Eye Center Tampere Finland
Retinal images have been increasingly important in clinical diagnostics of several eye and systemic diseases. To help the medical doctors in this work, automatic and semi-automatic diagnosis methods can be used to inc... 详细信息
来源: 评论
Learning to Predict Context-Adaptive Convolution for Semantic Segmentation  16th
Learning to Predict Context-Adaptive Convolution for Semanti...
收藏 引用
16th European Conference on computer vision, ECCV 2020
作者: Liu, Jianbo He, Junjun Qiao, Yu Ren, Jimmy S. Li, Hongsheng CUHK-SenseTime Joint Laboratory The Chinese University of Hong Kong Hong Kong Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Beijing China SenseTime Research Hong Kong
Long-range contextual information is essential for achieving high-performance semantic segmentation. Previous feature re-weighting methods demonstrate that using global context for re-weighting feature channels can ef... 详细信息
来源: 评论
Localized Support Vector Machines for Classification
Localized Support Vector Machines for Classification
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: Ming Dong Jing Wu Machine Vision and Pattern Recognition Laboratory Department of Computer Science Wayne State University Detroit MI USA
Support vector machines (SVMs) have been promising methods in pattern recognition because of their solid mathematical foundation. In this paper, we propose a localized SVM classification scheme (LSVM). In which we fir... 详细信息
来源: 评论
Communication via eye blinks and eyebrow raises: Video-based human-computer interfaces
收藏 引用
Universal Access in the Information Society 2003年 第4期2卷 359-373页
作者: Grauman, K. Betke, M. Lombardi, J. Gips, J. Bradski, G.R. Vision Interface Group AI Laboratory Massachusetts Institute of Technology 77 Massachusetts Avenue CambridgeMA02139 United States Computer Science Department Boston University 111 Cummington St BostonMA02215 United States EagleEyes Computer Science Department Boston College Fulton Hall Chestnut HillMA02467 United States Vision Graphics and Pattern Recognition Microcomputer Research Laboratory Intel Corporation SC12-303 2200 Mission College Blvd Santa ClaraCA95054-1537 United States
Two video-based human-computer interaction tools are introduced that can activate a binary switch and issue a selection command. "BlinkLink," as the first tool is called, automatically detects a user's e... 详细信息
来源: 评论
Gene Expression Clustering: a Novel Graph Partitioning Approach
Gene Expression Clustering: a Novel Graph Partitioning Appro...
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: Yanhua Chen Ming Dong Manjeet Rege Machine Vision and Pattern Recognition Laboratory Department of Computer Science Wayne State University Detroit MI USA
In order to help understand how the genes are affected by different disease conditions in a biological system, clustering is typically performed to analyze gene expression data. In this paper, we propose to solve the ... 详细信息
来源: 评论
Abstract: Learning to avoid poor images: towards task-aware c-arm cone-beam ct trajectories
Abstract: Learning to avoid poor images: towards task-aware ...
收藏 引用
International workshop on Algorithmen - Systeme - Anwendungen, 2020
作者: Zaech, Jan-Nico Gao, Cong Bier, Bastian Taylor, Russell Maier, Andreas Navab, Nassir Unberath, Mathias Laboratory for Computational Sensing and Robotics Johns Hopkins University Baltimore United States Pattern Recognition Lab Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen Germany Computer Vision Laboratory Eidgenössische Technische Hochschule Zürich Zürich Germany
Metal artifacts in computed tomography (CT) arise from a mismatch between physics of image formation and idealized assumptions during tomographic reconstruction. These artifacts are particularly strong around metal im... 详细信息
来源: 评论
Classifiability based omnivariate decision trees
Classifiability based omnivariate decision trees
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: Y. Li M. Dong Machine Vision and Pattern Recognition Laboratory Department of Computer Science Wayne State University Detroit MI USA
Decision trees represent a simple and powerful method of induction from labeled examples. Univariate decision trees consider the value of a single attribute at each node, leading to the splits that are parallel to the... 详细信息
来源: 评论
Automatic object segmentation from large scale 3D urban point clouds through manifold embedded mode seeking  11
Automatic object segmentation from large scale 3D urban poin...
收藏 引用
19th ACM International Conference on Multimedia ACM Multimedia 2011, MM'11
作者: Yu, Zhiding Xu, Chunjing Liu, Jianzhuang Au, Oscar C. Tang, Xiaoou Shenzhen Key Laboratory for Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China Department of Electronic and Computer Engineering Hong Kong University of Science and Technology Hong Kong Department of Information Engineering Chinese University of Hong Kong Hong Kong
This paper presents a system that can automatically segment objects in large scale 3D point clouds obtained from urban ranging images. The system consists of three steps: The first one involves a ground detection proc... 详细信息
来源: 评论