咨询与建议

限定检索结果

文献类型

  • 57 篇 会议
  • 16 篇 期刊文献
  • 4 册 图书

馆藏范围

  • 77 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 45 篇 工学
    • 36 篇 计算机科学与技术...
    • 34 篇 软件工程
    • 13 篇 信息与通信工程
    • 12 篇 光学工程
    • 7 篇 控制科学与工程
    • 6 篇 生物工程
    • 5 篇 力学(可授工学、理...
    • 5 篇 机械工程
    • 5 篇 电气工程
    • 5 篇 生物医学工程(可授...
    • 4 篇 电子科学与技术(可...
    • 3 篇 材料科学与工程(可...
    • 2 篇 仪器科学与技术
    • 2 篇 化学工程与技术
    • 1 篇 纺织科学与工程
    • 1 篇 航空宇航科学与技...
    • 1 篇 安全科学与工程
  • 29 篇 理学
    • 21 篇 数学
    • 14 篇 物理学
    • 7 篇 统计学(可授理学、...
    • 6 篇 生物学
    • 3 篇 系统科学
    • 2 篇 化学
  • 9 篇 管理学
    • 7 篇 图书情报与档案管...
    • 3 篇 管理科学与工程(可...
  • 4 篇 医学
    • 4 篇 临床医学
    • 3 篇 基础医学(可授医学...
    • 3 篇 药学(可授医学、理...
    • 1 篇 公共卫生与预防医...
  • 2 篇 法学
    • 2 篇 社会学

主题

  • 17 篇 pattern recognit...
  • 14 篇 computer vision
  • 7 篇 computer graphic...
  • 6 篇 image databases
  • 6 篇 image processing
  • 5 篇 image segmentati...
  • 5 篇 lighting
  • 5 篇 image recognitio...
  • 4 篇 biomedical imagi...
  • 4 篇 robustness
  • 3 篇 hidden markov mo...
  • 3 篇 pixel
  • 3 篇 machine vision
  • 3 篇 optimization
  • 3 篇 mobile robots
  • 3 篇 image retrieval
  • 3 篇 detectors
  • 3 篇 image reconstruc...
  • 3 篇 shape
  • 3 篇 character recogn...

机构

  • 6 篇 pattern recognit...
  • 6 篇 institute for co...
  • 5 篇 pattern recognit...
  • 4 篇 institute for co...
  • 3 篇 south china univ...
  • 3 篇 university of ch...
  • 3 篇 computer vision ...
  • 3 篇 computer vision ...
  • 2 篇 computer vision ...
  • 2 篇 shanghai ai lab
  • 2 篇 pattern recognit...
  • 2 篇 pattern recognit...
  • 2 篇 shenzhen key lab...
  • 2 篇 computer vision ...
  • 2 篇 sensetime group ...
  • 2 篇 shanghai ai labo...
  • 2 篇 computer vision ...
  • 2 篇 computer vision ...
  • 2 篇 institute of aut...
  • 2 篇 pazhou laborator...

作者

  • 7 篇 h. bischof
  • 7 篇 bischof horst
  • 6 篇 schnörr christop...
  • 5 篇 g. langs
  • 4 篇 weickert joachim
  • 4 篇 langs georg
  • 3 篇 ming dong
  • 3 篇 manjeet rege
  • 3 篇 dubey shiv ram
  • 3 篇 wildenauer horst
  • 3 篇 qiao yu
  • 3 篇 cremers daniel
  • 3 篇 roy swalpa kumar
  • 3 篇 farshad fotouhi
  • 2 篇 seuret mathias
  • 2 篇 s. wachenfeld
  • 2 篇 m. reiter
  • 2 篇 zhao rui
  • 2 篇 jogan matjaž
  • 2 篇 edwin r. hancock

语言

  • 76 篇 英文
  • 1 篇 其他
检索条件"机构=Computer Vision and Pattern Recognition group"
77 条 记 录,以下是61-70 订阅
排序:
Memory efficient fingerprint verification
Memory efficient fingerprint verification
收藏 引用
IEEE International Conference on Image Processing
作者: C. Beleznai H. Ramoser B. Wachmann J. Birchbauer H. Bischof W. Kropatsch Advanced Computer Vision Austrian Research Centre Seibersdorf Vienna Austria Programm-und Systementwicklung Siemens AG Österreich Graz Austria Pattern Recognition and Image Processing Group University of Technology Vienna Vienna Austria
Fingerprint recognition and verification are often based on local fingerprint features, usually ridge endings or terminations, also called minutiae. By exploiting the structural uniqueness of the image region around a... 详细信息
来源: 评论
Optimal sub-shape models by minimum description length
Optimal sub-shape models by minimum description length
收藏 引用
Conference on computer vision and pattern recognition (CVPR)
作者: G. Langs P. Peloschek H. Bischof Institute for Computer Graphics and Vision Graz University of Technology Graz Austria Pattern Recognition and Image Processing Group University of Technology Vienna Vienna Austria Department of Clinical Radiology Vienna Medical University Vienna Austria
Active shape models are powerful and widely used tool to interpret complex image data. By building models of shape variation they enable search algorithms to use a priori knowledge in an efficient and gainful way. How... 详细信息
来源: 评论
MsEDNet: Multi-Scale Deep Saliency Learning for Moving Object Detection
MsEDNet: Multi-Scale Deep Saliency Learning for Moving Objec...
收藏 引用
IEEE International Conference on Systems, Man, and Cybernetics
作者: Prashant W. Patil Subrahmanyam Murala Abhinav Dhall Sachin Chaudhary Indian Institute of Technology Delhi New Delhi Delhi IN Computer Vision and Pattern Recognition Lab Indian Institute of Technology Ropar INDIA Learning Afffect and Semantic Image AnalysIs (LASII) Group Indian Institute of Technology Ropar INDIA
Moving object detection (foreground and background) is an important problem in computer vision. Most of the works in this problem are based on background subtraction. However, these approaches are not able to handle s... 详细信息
来源: 评论
TransDocUNet: A Transformer-based UNet Architecture for Degraded Document Image Binarization  23
TransDocUNet: A Transformer-based UNet Architecture for Degr...
收藏 引用
Proceedings of the Fourteenth Indian Conference on computer vision, Graphics and Image Processing
作者: Risab Biswas Soumik Sarkhel Swalpa Kumar Roy Umapada Pal Artificial Intelligence Group Optiks Innovations Pvt. Ltd. (P360) India Department of Computer Science and Engineering Alipurduar Government Engineering and Management College India Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata India
The enhancement of historical document images is critical for improving the quality and legibility of scanned or captured document images. Convolutional-based techniques previously generated competitive results for do... 详细信息
来源: 评论
Neighbourhood-guided feature reconstruction for occluded person re-identification
arXiv
收藏 引用
arXiv 2021年
作者: Yu, Shijie Chen, Dapeng Zhao, Rui Chen, Haobin Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institute of Advanced Technology Chinese Academy of Sciences University of Chinese Academy of Sciences China SenseTime Group Limited Shanghai AI Lab Shanghai China
Person images captured by surveillance cameras are often occluded by various obstacles, which lead to defective feature representation and harm person re-identification (Re-ID) performance. To tackle this challenge, w... 详细信息
来源: 评论
Local jet pattern: A robust descriptor for texture classification
arXiv
收藏 引用
arXiv 2017年
作者: Roy, Swalpa Kumar Chanda, Bhabatosh Chaudhuri, Bidyut B. Ghosh, Dipak Kumar Dubey, Shiv Ram Electronics and Communication Sciences Unit Indian Statistical Institute Kolkata700108 India Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata700108 India Department of Electronics & Communication Engineering National Institute of Technology Rourkela Orissa769008 India Computer Vision Group Indian Institute of Information Technology Sri City Andhra Pradesh517646 India
Methods based on locally encoded image features have recently become popular for texture classification tasks, particularly in the existence of large intra-class variation due to changes in illumination, scale, and vi... 详细信息
来源: 评论
A feasibility study of on-board data compression for infrared cameras of space observatories
A feasibility study of on-board data compression for infrare...
收藏 引用
International Conference on pattern recognition
作者: C. Reimers A.N. Belbachir H. Bischof R. Ottensamer D.A. Cesarsky H. Feuchtgruber F. Kerschbaum A. Poglitsch Institute of Astronomy University of Technology Vienna Vienna Austria Pattern Recognition and Image Procesing Group University of Technology Vienna Vienna Austria Institute of Computer Graphics and Vision Technical University of Graz Graz Austria Max-Planck Institute of Extraterrestrial Physics Garching Germany
In this paper, the feasibility of on-board data reduction/compression concept described in is evaluated for infrared images taken from space observatories. The method described in, which was initially designed and dev... 详细信息
来源: 评论
diffGrad: An optimization method for convolutional neural networks
arXiv
收藏 引用
arXiv 2019年
作者: Dubey, Shiv Ram Chakraborty, Soumendu Roy, Swalpa Kumar Mukherjee, Snehasis Singh, Satish Kumar Chaudhuri, Bidyut Baran The Computer Vision Group Indian Institute of Information Technology Sri City Andhra Pradesh Chittoor517646 India The Indian Institute of Information Technology Uttar Pradesh Lucknow India The Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata700108 India Techno India University Sector V Salt Lake City Kolkata700091 India The Computer Vision and Biometrics Laboratory Indian Institute of Information Technology Allahabad211015 India
Stochastic Gradient Decent (SGD) is one of the core techniques behind the success of deep neural networks. The gradient provides information on the direction in which a function has the steepest rate of change. The ma... 详细信息
来源: 评论
Motion Analysis of Endovascular Stent-Grafts by MDL Based Registration
Motion Analysis of Endovascular Stent-Grafts by MDL Based Re...
收藏 引用
International Conference on computer vision (ICCV)
作者: Georg Langs Nikos Paragios Rene Donner Pascal Desgranges Alain Rahmouni Hicham Kobeiter GALEN Group Laboratoire de Mathématiques Appliquées aux Systàmes Ecole Centrale de Paris France Institute for Computer Graphics and Vision Graz University of Technology Austria Pattern Recognition and Image Processing Group University of Technology Vienna Austria University of Paris XII Paris France
The endovascular repair of a traumatic rupture of the thoracic aorta - that would otherwise lead to the death of the patient - is performed by delivering a stent-graft into the vessel at the rupture location. The age ... 详细信息
来源: 评论
Multiple domain experts collaborative learning: Multi-source domain generalization for person re-identification
arXiv
收藏 引用
arXiv 2021年
作者: Yu, Shijie Zhu, Feng Chen, Dapeng Zhao, Rui Chen, Haobin Zhu, Jinguo Tang, Shixiang Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences University of Chinese Academy of Sciences China SenseTime Group Limited Shanghai AI Lab Shanghai China Qing Yuan Research Institute Shanghai Jiao Tong University Shanghai China
Recent years have witnessed significant progress in person re-identification (ReID). However, current ReID approaches still suffer from considerable performance degradation when unseen testing domains exhibit differen... 详细信息
来源: 评论