咨询与建议

限定检索结果

文献类型

  • 940 篇 会议
  • 401 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 1,343 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 713 篇 工学
    • 427 篇 计算机科学与技术...
    • 378 篇 软件工程
    • 208 篇 控制科学与工程
    • 193 篇 光学工程
    • 126 篇 信息与通信工程
    • 108 篇 机械工程
    • 101 篇 生物工程
    • 79 篇 生物医学工程(可授...
    • 73 篇 电气工程
    • 57 篇 电子科学与技术(可...
    • 55 篇 仪器科学与技术
    • 48 篇 交通运输工程
    • 42 篇 土木工程
    • 31 篇 船舶与海洋工程
    • 30 篇 安全科学与工程
    • 29 篇 化学工程与技术
    • 28 篇 建筑学
  • 392 篇 理学
    • 191 篇 物理学
    • 142 篇 数学
    • 106 篇 生物学
    • 54 篇 统计学(可授理学、...
    • 30 篇 化学
    • 26 篇 系统科学
  • 116 篇 管理学
    • 70 篇 管理科学与工程(可...
    • 52 篇 图书情报与档案管...
    • 31 篇 工商管理
  • 63 篇 医学
    • 57 篇 临床医学
    • 50 篇 基础医学(可授医学...
    • 30 篇 药学(可授医学、理...
    • 23 篇 公共卫生与预防医...
  • 17 篇 法学
  • 13 篇 经济学
  • 12 篇 农学
  • 9 篇 教育学
  • 3 篇 军事学
  • 3 篇 艺术学
  • 1 篇 哲学
  • 1 篇 文学

主题

  • 203 篇 computer vision
  • 157 篇 cameras
  • 154 篇 robot vision sys...
  • 74 篇 robot sensing sy...
  • 70 篇 intelligent robo...
  • 70 篇 laboratories
  • 64 篇 layout
  • 60 篇 robustness
  • 55 篇 robots
  • 55 篇 feature extracti...
  • 54 篇 navigation
  • 48 篇 image segmentati...
  • 47 篇 mobile robots
  • 43 篇 humans
  • 42 篇 object detection
  • 42 篇 trajectory
  • 42 篇 shape
  • 40 篇 vehicles
  • 39 篇 robot kinematics
  • 38 篇 robotics and aut...

机构

  • 29 篇 computer vision ...
  • 28 篇 computer vision ...
  • 27 篇 university of ch...
  • 27 篇 computer vision ...
  • 26 篇 shenzhen institu...
  • 21 篇 siat branch shen...
  • 20 篇 artificial intel...
  • 17 篇 institutes for r...
  • 16 篇 computer vision ...
  • 16 篇 institute of rob...
  • 16 篇 computer vision ...
  • 16 篇 national enginee...
  • 16 篇 shenzhen key lab...
  • 15 篇 embedded vision ...
  • 13 篇 guangdong key la...
  • 13 篇 shenzhen key lab...
  • 12 篇 computer vision ...
  • 12 篇 computer vision ...
  • 12 篇 shenyang institu...
  • 10 篇 computer vision ...

作者

  • 59 篇 m.m. trivedi
  • 36 篇 shen linlin
  • 33 篇 in so kweon
  • 30 篇 kryjak tomasz
  • 24 篇 trivedi mohan m.
  • 24 篇 martí robert
  • 23 篇 oliver arnau
  • 23 篇 mohan m. trivedi
  • 23 篇 qiao yu
  • 23 篇 n.p. papanikolop...
  • 20 篇 kweon in so
  • 19 篇 marc carreras
  • 19 篇 pere ridao
  • 18 篇 lladó xavier
  • 17 篇 douglas g. macha...
  • 17 篇 pascual campoy
  • 16 篇 zhang hong
  • 16 篇 garcia rafael
  • 15 篇 r. garcia
  • 15 篇 rafael garcia

语言

  • 1,288 篇 英文
  • 52 篇 其他
  • 3 篇 中文
检索条件"机构=Computer Vision and Robotics"
1343 条 记 录,以下是381-390 订阅
排序:
Fair Evaluation of Federated Learning Algorithms for Automated Breast Density Classification: The Results of the 2022 ACR-NCI-NVIDIA Federated Learning Challenge
arXiv
收藏 引用
arXiv 2024年
作者: Schmidt, Kendall Bearce, Benjamin Chang, Ken Coombs, Laura Farahani, Keyvan Elbatel, Marawan Mouheb, Kaouther Marti, Robert Zhang, Ruipeng Zhang, Yao Wang, Yanfeng Hu, Yaojun Ying, Haochao Xu, Yuyang Testagrose, Conrad Demirer, Mutlu Gupta, Vikash Akünal, Ünal Bujotzek, Markus Maier-Hein, Klaus H. Qin, Yi Li, Xiaomeng Kalpathy-Cramer, Jayashree Roth, Holger R. American College of Radiology United States The Massachusetts General Hospital United States University of Colorado United States National Institutes of Health National Cancer Institute United States Computer Vision and Robotics Institute University of Girona Spain Cooperative Medianet Innovation Center Shanghai Jiao Tong University China Shanghai AI Laboratory China Real Doctor AI Research Centre Zhejiang University China School of Public Health Zhejiang University China College of Computer Science and Technology Zhejiang University China University of North Florida College of Computing Jacksonville United States Mayo Clinic Florida Radiology United States Division of Medical Image Computing German Cancer Research Center Heidelberg Germany Electronic and Computer Engineering Hong Kong University of Science and Technology China NVIDIA United States
The correct interpretation of breast density is important in the assessment of breast cancer risk. AI has been shown capable of accurately predicting breast density, however, due to the differences in imaging characte... 详细信息
来源: 评论
Adaptive Partitioning for Coordinated Multi-agent Perimeter Defense
Adaptive Partitioning for Coordinated Multi-agent Perimeter ...
收藏 引用
2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
作者: Douglas G. Macharet Austin K. Chen Daigo Shishika George J. Pappas Vijay Kumar GRASP Lab University of Pennsylvania Philadelphia USA Computer Vision and Robotics Laboratory (VeRLab) Universidade Federal de Minas Gerais Brazil
Multi-Robot Systems have been recently employed in different applications and have advantages over single-robot systems, such as increased robustness and task performance efficiency. We consider such assemblies specif... 详细信息
来源: 评论
Autonomous mapping of underwater 3-d structures: From view planning to execution
收藏 引用
IEEE robotics and Automation Letters 2018年 第3期3卷 1965-1971页
作者: Palomeras, Narcis Hurtos, Natalia Carreras, Marc Ridao, Pere Computer Vision and Robotics Group University of Girona Girona17003 Spain
Three-dimensional mapping of submerged industrial facilities or underwater sites with complex geometries is still a challenge for nowadays autonomous underwater vehicles (AUVs), which are restricted to more simple sur... 详细信息
来源: 评论
An Improved SSD for small target detection
An Improved SSD for small target detection
收藏 引用
作者: Xiang Li Haibo LuoX Key Laboratory of Opt-Electronic Information Processing Chinese Academy of Sciences Shenyang Institute of Automation Chinese Academy of Sciences Institutes for Robotics and Intelligent Manufacturing Chinese Academy of Sciences University of Chinese Academy of Sciences The Key Laboratory of Image Understanding and Computer Vision
SSD is one of heuristic one-stage target detection *** it has got impressive results in general target detection,it still struggles in small-size object detection and precise *** this paper,we proposed an improved SSD... 详细信息
来源: 评论
WaveCNet: Wavelet integrated CNNs to suppress aliasing effect for noise-robust image classification
arXiv
收藏 引用
arXiv 2021年
作者: Li, Qiufu Shen, Linlin Guo, Sheng Lai, Zhihui Computer Vision Institute College of Computer Science and Software Engineering Shenzhen University Shenzhen518060 China Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen518060 China Guangdong Key Laboratory of Intelligent Information Processing Shenzhen University Shenzhen518060 China MyBank Ant Group Hangzhou310012 China
Though widely used in image classification, convolutional neural networks (CNNs) are prone to noise interruptions, i.e. the CNN output can be drastically changed by small image noise. To improve the noise robustness, ... 详细信息
来源: 评论
Conditional Sequential Modulation for Efficient Global Image Retouching  16th
Conditional Sequential Modulation for Efficient Global Image...
收藏 引用
16th European Conference on computer vision, ECCV 2020
作者: He, Jingwen Liu, Yihao Qiao, Yu Dong, Chao ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT - SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Beijing China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen China University of Chinese Academy of Sciences Beijing China
Photo retouching aims at enhancing the aesthetic visual quality of images that suffer from photographic defects such as over/under exposure, poor contrast, inharmonious saturation. Practically, photo retouching can be... 详细信息
来源: 评论
Efficient Image Super-Resolution Using Pixel Attention  16th
Efficient Image Super-Resolution Using Pixel Attention
收藏 引用
Workshops held at the 16th European Conference on computer vision, ECCV 2020
作者: Zhao, Hengyuan Kong, Xiangtao He, Jingwen Qiao, Yu Dong, Chao ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Beijing China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen China University of Chinese Academy of Sciences Beijing China
This work aims at designing a lightweight convolutional neural network for image super resolution (SR). With simplicity bare in mind, we construct a pretty concise and effective network with a newly proposed pixel att... 详细信息
来源: 评论
SESAME: Semantic editing of scenes by adding, manipulating or erasing objects
arXiv
收藏 引用
arXiv 2020年
作者: Ntavelis, Evangelos Romero, Andrés Kastanis, Iason van Gool, Luc Timofte, Radu Computer Vision Lab. ETH Zurich Switzerland Robotics and Machine Learning CSEM SA Switzerland PSI ESAT KU Leuven Belgium
Recent advances in image generation gave rise to powerful tools for semantic image editing. However, existing approaches can either operate on a single image or require an abundance of additional information. They are... 详细信息
来源: 评论
Open-set face recognition for small galleries using siamese networks
arXiv
收藏 引用
arXiv 2021年
作者: Salomon, Gabriel Britto, Alceu Vareto, Rafael H. Schwartz, William R. Menotti, David Vision Robotics and Imaging Laboratory Universidade Federal Do Paraná 82590300 Brazil Ppgia Pontifícia Universidade Católica Do Paraná 80215901 Brazil Smart Sense Laboratory Department of Computer Science Universidade Federal de Minas Gerais 31270901 Brazil
Face recognition has been one of the most relevant and explored fields of Biometrics. In real-world applications, face recognition methods usually must deal with scenarios where not all probe individuals were seen dur... 详细信息
来源: 评论
Accurate mapping and planning for autonomous racing
arXiv
收藏 引用
arXiv 2020年
作者: Andresen, Leiv Brandemuehl, Adrian Hönger, Alex Kuan, Benson Vödisch, Niclas Blum, Hermann Reijgwart, Victor Bernreiter, Lukas Schaupp, Lukas Chung, Jen Jen Bürki, Mathias Oswald, Martin R. Siegwart, Roland Gawel, Abel Autonomous Systems Lab Eth Zürich Switzerland Computer Vision and Geometry Group Eth Zürich Switzerland Sevensense Robotics Ag
This paper presents the perception, mapping, and planning pipeline implemented on an autonomous race car. It was developed by the 2019 AMZ driverless team for the Formula Student Germany (FSG) 2019 driverless competit... 详细信息
来源: 评论