咨询与建议

限定检索结果

文献类型

  • 257 篇 会议
  • 211 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 469 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 284 篇 工学
    • 174 篇 计算机科学与技术...
    • 162 篇 软件工程
    • 89 篇 光学工程
    • 65 篇 控制科学与工程
    • 59 篇 信息与通信工程
    • 52 篇 生物医学工程(可授...
    • 52 篇 生物工程
    • 39 篇 机械工程
    • 32 篇 电气工程
    • 22 篇 电子科学与技术(可...
    • 19 篇 仪器科学与技术
    • 17 篇 土木工程
    • 16 篇 船舶与海洋工程
    • 14 篇 化学工程与技术
    • 12 篇 建筑学
    • 10 篇 交通运输工程
    • 9 篇 安全科学与工程
    • 8 篇 力学(可授工学、理...
  • 170 篇 理学
    • 83 篇 物理学
    • 63 篇 数学
    • 54 篇 生物学
    • 26 篇 统计学(可授理学、...
    • 14 篇 化学
  • 52 篇 管理学
    • 33 篇 图书情报与档案管...
    • 23 篇 管理科学与工程(可...
    • 8 篇 工商管理
  • 36 篇 医学
    • 33 篇 临床医学
    • 31 篇 基础医学(可授医学...
    • 17 篇 药学(可授医学、理...
    • 16 篇 公共卫生与预防医...
  • 7 篇 法学
  • 3 篇 经济学
  • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 军事学

主题

  • 41 篇 computer vision
  • 35 篇 cameras
  • 25 篇 robot vision sys...
  • 16 篇 robot sensing sy...
  • 15 篇 robots
  • 15 篇 navigation
  • 14 篇 autonomous under...
  • 13 篇 trajectory
  • 13 篇 training
  • 12 篇 underwater vehic...
  • 12 篇 laboratories
  • 12 篇 feature extracti...
  • 11 篇 semantics
  • 11 篇 image reconstruc...
  • 10 篇 face recognition
  • 10 篇 convolution
  • 9 篇 motion estimatio...
  • 9 篇 object detection
  • 9 篇 magnetic resonan...
  • 9 篇 application soft...

机构

  • 27 篇 university of ch...
  • 26 篇 shenzhen institu...
  • 21 篇 siat branch shen...
  • 17 篇 institutes for r...
  • 16 篇 institute of rob...
  • 16 篇 national enginee...
  • 14 篇 computer vision ...
  • 13 篇 guangdong key la...
  • 13 篇 shenzhen key lab...
  • 12 篇 computer vision ...
  • 12 篇 shenyang institu...
  • 8 篇 computer vision ...
  • 8 篇 computer vision ...
  • 7 篇 computer vision ...
  • 7 篇 key laboratory o...
  • 7 篇 computer vision ...
  • 7 篇 innopolis univer...
  • 6 篇 robotics institu...
  • 6 篇 research institu...
  • 6 篇 computer vision ...

作者

  • 36 篇 shen linlin
  • 23 篇 qiao yu
  • 17 篇 pere ridao
  • 14 篇 xie weicheng
  • 13 篇 martí robert
  • 12 篇 marc carreras
  • 11 篇 valverde sergi
  • 11 篇 oliver arnau
  • 10 篇 r. garcia
  • 9 篇 x. cufi
  • 9 篇 narcís palomeras
  • 9 篇 lladó xavier
  • 9 篇 linlin shen
  • 8 篇 song siyang
  • 8 篇 wang yali
  • 8 篇 cabezas mariano
  • 8 篇 luo cheng
  • 8 篇 in so kweon
  • 8 篇 li qiufu
  • 7 篇 elbatel marawan

语言

  • 451 篇 英文
  • 17 篇 其他
  • 1 篇 中文
检索条件"机构=Computer Vision and Robotics Institute"
469 条 记 录,以下是361-370 订阅
排序:
Segment-Based Trajectory Prediction and Risk Assessment for RSU-assisted CAVs at Signalized Intersections
IEEE Transactions on Intelligent Vehicles
收藏 引用
IEEE Transactions on Intelligent Vehicles 2024年 1-19页
作者: Cao, Yue Shangguan, Wei Visser, Arnoud Chen, Junjie Chai, Linguo Cai, Baigen School of Automation and Intelligence Beijing Jiaotong University Beijing China School of Automation and Intelligence and State Key Laboratory of Rail Traffic Control and Safety Beijing Jiaotong University Beijing China Intelligent Robotics and Computer Vision Lab of the Informatics Institute Faculty of Science University of Amsterdam The Netherlands
Detecting surrounding situations and reacting accordingly to avoid collisions remains a challenging task for autonomous driving. This task requires predicting the trajectories of surrounding agents and assessing the p... 详细信息
来源: 评论
*** 1.0: The Full Autonomous Stack for Oval Racing at High Speeds
arXiv
收藏 引用
arXiv 2023年
作者: Raji, Ayoub Caporale, Danilo Gatti, Francesco Giove, Andrea Verucchi, Micaela Malatesta, Davide Musiu, Nicola Toschi, Alessandro Popitanu, Silviu Roberto Bagni, Fabio Bosi, Massimiliano Liniger, Alexander Bertogna, Marko Morra, Daniele Amerotti, Francesco Bartoli, Luca Martello, Federico Porta, Riccardo University of Modena and Reggio Emilia Italy University of Parma Italy Technology Innovation Institute - Autonomous Robotics Research Center United Arab Emirates HIPERT srl Italy University of Pisa Italy Computer Vision Lab ETH Zurich Switzerland
The Indy Autonomous Challenge (IAC) brought together for the first time in history nine autonomous racing teams competing at unprecedented speed and in head-to-head scenario, using independently developed software on ... 详细信息
来源: 评论
P1AC: Revisiting Absolute Pose From a Single Affine Correspondence
P1AC: Revisiting Absolute Pose From a Single Affine Correspo...
收藏 引用
International Conference on computer vision (ICCV)
作者: Jonathan Ventura Zuzana Kukelova Torsten Sattler Dániel Baráth Department of Computer Science & Software Engineering Cal Poly San Luis Obispo Visual Recognition Group Faculty of Electrical Engineering Czech Technical University in Prague Czech Institute of Informatics Robotics and Cybernetics Czech Technical University in Prague Computer Vision and Geometry Group ETH Zürich
Affine correspondences have traditionally been used to improve feature matching over wide baselines. While recent work has successfully used affine correspondences to solve various relative camera pose estimation prob...
来源: 评论
Robotic Software System for the Disaster Circumstances: System of Team KAIST in the DARPA robotics Challenge Finals
Robotic Software System for the Disaster Circumstances: Syst...
收藏 引用
IEEE-RAS International Conference on Humanoid Robots
作者: Jeongsoo Lim Inwook Shim Okkee Sim Hyunmin Joe Inhyeok Kim Jungho Lee Jun-Ho Oh Humanoid Research Center School of Mechanical Aerospace & Systems Engineering Department of Mechanical Engineering Korea Advanced Institute of Science and Technology Robotics and Computer Vision Laboratory Department of Electrical Engineering College of Information Science and Technology Korea Advanced Institute of Science and Technology Rainbow Co.
We developed a software system for operating the humanoid robot DRC-HUBO+ in disaster circumstances that the US Defense Advanced Research Projects Agency suggested. This system was developed under the consideration of... 详细信息
来源: 评论
Augmented Box Replay: Overcoming Foreground Shift for Incremental Object Detection
arXiv
收藏 引用
arXiv 2023年
作者: Liu, Yuyang Cong, Yang Goswami, Dipam Liu, Xialei van de Weijer, Joost State Key Laboratory of Robotics Shenyang Institute of Automation Chinese Academy of Sciences China Institutes for Robotics and Intelligent Manufacturing Chinese Academy of Sciences China University of Chinese Academy of Sciences China South China University of Technology China Computer Vision Center Barcelona Spain VCIP CS Nankai University China Department of Computer Science Universitat Autònoma de Barcelona Spain
In incremental learning, replaying stored samples from previous tasks together with current task samples is one of the most efficient approaches to address catastrophic forgetting. However, unlike incremental classifi... 详细信息
来源: 评论
Group-wise inhibition based feature regularization for robust classification
arXiv
收藏 引用
arXiv 2021年
作者: Liu, Haozhe Wu, Haoqian Xie, Weicheng Liu, Feng Shen, Linlin 1Computer Vision Institute College of Computer Science and Software Engineering 2SZU Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society 3National Engineering Laboratory for Big Data System Computing Technology 4Guangdong Key Laboratory of Intelligent Information Processing Shenzhen University Shenzhen 518060 China
The convolutional neural network (CNN) is vulnerable to degraded images with even very small variations (e.g. corrupted and adversarial samples). One of the possible reasons is that CNN pays more attention to the most... 详细信息
来源: 评论
StyleGene: Crossover and Mutation of Region-level Facial Genes for Kinship Face Synthesis
StyleGene: Crossover and Mutation of Region-level Facial Gen...
收藏 引用
Conference on computer vision and Pattern Recognition (CVPR)
作者: Hao Li Xianxu Hou Zepeng Huang Linlin Shen Computer Vision Institute College of Computer Science and Software Engineering Shenzhen University National Engineering Laboratory for Big Data System Computing Technology Shenzhen University School of AI and Advanced Computing Xi'an Jiaotong-Liverpool University Shenzhen Institute of Artificial Intelligence and Robotics for Society Guangdong Key Laboratory of Intelligent Information Processing Shenzhen University
High-fidelity kinship face synthesis has many potential applications, such as kinship verification, missing child identification, and social media analysis. However, it is challenging to synthesize high-quality descen...
来源: 评论
An Improved SSD for small target detection
An Improved SSD for small target detection
收藏 引用
作者: Xiang Li Haibo LuoX Key Laboratory of Opt-Electronic Information Processing Chinese Academy of Sciences Shenyang Institute of Automation Chinese Academy of Sciences Institutes for Robotics and Intelligent Manufacturing Chinese Academy of Sciences University of Chinese Academy of Sciences The Key Laboratory of Image Understanding and Computer Vision
SSD is one of heuristic one-stage target detection *** it has got impressive results in general target detection,it still struggles in small-size object detection and precise *** this paper,we proposed an improved SSD... 详细信息
来源: 评论
UniTSFace: Unified Threshold Integrated Sample-to-Sample Loss for Face Recognition
arXiv
收藏 引用
arXiv 2023年
作者: Li, Qiufu Jia, Xi Zhou, Jiancan Shen, Linlin Duan, Jinming National Engineering Laboratory for Big Data System Computing Technology Shenzhen University China Computer Vision Institute Shenzhen University China School of Computer Science University of Birmingham United Kingdom Aqara Lumi United Technology Co. Ltd China Alan Turing Institute United Kingdom SZU Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society China
Sample-to-class-based face recognition models can not fully explore the cross-sample relationship among large amounts of facial images, while sample-to-sample-based models require sophisticated pairing processes for t... 详细信息
来源: 评论
Shape-aware Meta-learning for Generalizing Prostate MRI Segmentation to Unseen Domains
arXiv
收藏 引用
arXiv 2020年
作者: Liu, Quande Dou, Qi Heng, Pheng Ann Department of Computer Science and Engineering Chinese University of Hong Kong Hong Kong T Stone Robotics Institute Chinese University of Hong Kong Hong Kong Guangdong Provincial Key Laboratory of Computer Vision and Virtual Reality Technology Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China
Model generalization capacity at domain shift (e.g., various imaging protocols and scanners) is crucial for deep learning methods in real-world clinical deployment. This paper tackles the challenging problem of domain... 详细信息
来源: 评论