咨询与建议

限定检索结果

文献类型

  • 257 篇 会议
  • 209 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 467 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 282 篇 工学
    • 172 篇 计算机科学与技术...
    • 161 篇 软件工程
    • 89 篇 光学工程
    • 64 篇 控制科学与工程
    • 59 篇 信息与通信工程
    • 52 篇 生物医学工程(可授...
    • 52 篇 生物工程
    • 38 篇 机械工程
    • 31 篇 电气工程
    • 22 篇 电子科学与技术(可...
    • 19 篇 仪器科学与技术
    • 17 篇 土木工程
    • 16 篇 船舶与海洋工程
    • 14 篇 化学工程与技术
    • 12 篇 建筑学
    • 9 篇 交通运输工程
    • 9 篇 安全科学与工程
    • 7 篇 力学(可授工学、理...
  • 170 篇 理学
    • 83 篇 物理学
    • 63 篇 数学
    • 54 篇 生物学
    • 26 篇 统计学(可授理学、...
    • 14 篇 化学
  • 51 篇 管理学
    • 32 篇 图书情报与档案管...
    • 22 篇 管理科学与工程(可...
  • 36 篇 医学
    • 33 篇 临床医学
    • 31 篇 基础医学(可授医学...
    • 17 篇 药学(可授医学、理...
    • 16 篇 公共卫生与预防医...
  • 7 篇 法学
    • 7 篇 社会学
  • 3 篇 经济学
  • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 军事学

主题

  • 41 篇 computer vision
  • 35 篇 cameras
  • 25 篇 robot vision sys...
  • 16 篇 robot sensing sy...
  • 15 篇 robots
  • 15 篇 navigation
  • 14 篇 autonomous under...
  • 13 篇 trajectory
  • 13 篇 training
  • 12 篇 underwater vehic...
  • 12 篇 laboratories
  • 12 篇 feature extracti...
  • 11 篇 semantics
  • 11 篇 image reconstruc...
  • 10 篇 face recognition
  • 10 篇 convolution
  • 9 篇 motion estimatio...
  • 9 篇 object detection
  • 9 篇 magnetic resonan...
  • 9 篇 application soft...

机构

  • 27 篇 university of ch...
  • 26 篇 shenzhen institu...
  • 21 篇 siat branch shen...
  • 16 篇 institute of rob...
  • 16 篇 institutes for r...
  • 16 篇 national enginee...
  • 14 篇 computer vision ...
  • 13 篇 guangdong key la...
  • 13 篇 shenzhen key lab...
  • 12 篇 computer vision ...
  • 12 篇 shenyang institu...
  • 8 篇 computer vision ...
  • 8 篇 computer vision ...
  • 7 篇 computer vision ...
  • 7 篇 key laboratory o...
  • 7 篇 computer vision ...
  • 7 篇 innopolis univer...
  • 6 篇 robotics institu...
  • 6 篇 research institu...
  • 6 篇 computer vision ...

作者

  • 36 篇 shen linlin
  • 23 篇 qiao yu
  • 17 篇 pere ridao
  • 14 篇 martí robert
  • 14 篇 xie weicheng
  • 12 篇 marc carreras
  • 11 篇 valverde sergi
  • 11 篇 oliver arnau
  • 10 篇 r. garcia
  • 9 篇 x. cufi
  • 9 篇 narcís palomeras
  • 9 篇 lladó xavier
  • 9 篇 linlin shen
  • 8 篇 song siyang
  • 8 篇 wang yali
  • 8 篇 cabezas mariano
  • 8 篇 luo cheng
  • 8 篇 in so kweon
  • 8 篇 li qiufu
  • 7 篇 elbatel marawan

语言

  • 449 篇 英文
  • 17 篇 其他
  • 1 篇 中文
检索条件"机构=Computer Vision and Robotics Institute"
467 条 记 录,以下是401-410 订阅
排序:
Constricting Normal Latent Space for Anomaly Detection with Normal-only Training Data
arXiv
收藏 引用
arXiv 2024年
作者: Astrid, Marcella Zaheer, Muhammad Zaigham Lee, Seung-Ik Department of Artificial Intelligence University of Science and Technology Korea Republic of Field Robotics Research Section Electronics and Telecommunications Research Institute Korea Republic of Interdisciplinary Centre for Security Reliability and Trust University of Luxembourg Luxembourg Department of Computer Vision Mohamed Bin Zayed University of Artificial Intelligence United Arab Emirates
In order to devise an anomaly detection model using only normal training data, an autoencoder (AE) is typically trained to reconstruct the data. As a result, the AE can extract normal representations in its latent spa... 详细信息
来源: 评论
The Method of Neural Network Control over the Process of Manufacturing Foil Solar Panels  2
The Method of Neural Network Control over the Process of Man...
收藏 引用
2nd IEEE International Conference on System Analysis and Intelligent Computing, SAIC 2020
作者: Sachenko, Anatoliy Ivakhiv, Orest Vyshnia, Volodymyr Grzeszczyk, Konrad Osolinskyi, Oleksandr Novosad, Stanislav Kochan, Volodymyr Nakonechnyi, Markiyan Kochan, Orest Kopania, Lukasz Kazimierz Pulaski University of Technology and Humanities in Radom Department of Informatics Radom Poland Lviv Polytechnic National University Department of Intelligent Mechatronics and Robotics Lviv Ukraine Dnipropetrovsk State University of Internal Affairs Department of Economic and Information Security Dnipro Ukraine International Vision Machinery VISORT Sp. J Radom Poland Ternopil National Economic University Department for Information Computer Systems and Control Ternopil Ukraine Ternopil National Economic University Research Institute for Intelligent Computer Systems Ternopil Ukraine Lviv Polytechnic National University Department of Computerized Automation Systems Lviv Ukraine Lviv Polytechnic National University Department of Measuring Information Technologies Lviv Ukraine
Authors have developed a method of control over one of the main technological processes of manufacturing foil solar panels, i.e., burning tracks in the layers of semiconductor material and insulation. The proposed met... 详细信息
来源: 评论
ROBOTIC AND ARTIFICIAL-INTELLIGENCE SYSTEMS FOR THE NAVAL OPERATIONAL ENVIRONMENT
收藏 引用
NAVAL ENGINEERS JOURNAL 1987年 第4期99卷 74-86页
作者: HOGGE, SM The author earned her bachelor's of science degree in industrial engineering and operations research from Virginia Polytechnic Institute and State University. While at Virginia Tech she worked in the Robotics Laboratory supporting robotics research sponsored by the National Bureau of Standards. She completed her master's of science in computer science at The Johns Hopkins University. Until this past March Miss Hogge worked at the Naval Surface Weapons Center in Silver Spring Maryland. Her duties included the application of robotics and artificial intelligence to explosive ordnance disassembly mobile robotics remote controlled fire fighting vehicles human factors expert systems computer enhanced decision-making aids and hardware security. She published a two-volume study discussing shipboard operational applications of robotics and AI. In addition her publications include nine recent journal articles on robotics and computer security. Miss Hogge is currently employed with Automaker Inc. in Houston Texas. Her current role is manager of all government related robotic operations and vision systems. Miss Hogge's projects at Automaker include: an explosive ordnance disassembly gantry robot system a vision inspection system to examine bearings 3-part camouflage spray painting an investigation of the use of robotic welding in Navy shipyards and rework facilities and epoxy spray painting of missile radomes.
Due to demographical factors, there will be a 25% decline in the national labor pool of eligible 17 to 21 year old men by 1992. As the Navy faces fierce competition with other services and private industry for the dwi... 详细信息
来源: 评论
Self-slimmed vision Transformer
arXiv
收藏 引用
arXiv 2021年
作者: Zong, Zhuofan Li, Kunchang Song, Guanglu Wang, Yali Qiao, Yu Leng, Biao Liu, Yu School of Computer Science and Engineering Beihang University China SenseTime Research China ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society China Shanghai AI Laboratory China
vision transformers (ViTs) have become the popular structures and outperformed convolutional neural networks (CNNs) on various vision tasks. However, such powerful transformers bring a huge computation burden, because... 详细信息
来源: 评论
Relative pose of three calibrated and partially calibrated cameras from four points using virtual correspondences
arXiv
收藏 引用
arXiv 2023年
作者: Tzamos, Charalambos Kocur, Viktor Barath, Daniel Haladová, Zuzana Berger Sattler, Torsten Kukelova, Zuzana Visual Recognition Group Faculty of Electrical Engineering Czech Technical University in Prague Czech Republic Faculty of Mathematics Physics and Informatics Comenius University in Bratislava Slovakia ETH Zürich Computer Vision and Geometry Group Switzerland Czech Institute of Informatics Robotics and Cybernetics Czech Technical University in Prague Czech Republic
We study challenging problems of estimating the relative pose of three cameras and propose novel efficient solutions to the configurations (1) of four points in three calibrated cameras (the 4p3v problem), and (2) of ... 详细信息
来源: 评论
Suborbital flight test of a prototype terrain-relative navigation system
Suborbital flight test of a prototype terrain-relative navig...
收藏 引用
2007 AIAA InfoTech at Aerospace Conference
作者: Seybold, Calina Chen, George Bellutta, Paolo Johnson, Andrew Matthies, Larry Thurman, Sam Jet Propulsion Laboratory California Institute of Technology Pasadena CA 91109 United States System Engineering Section M/S 233-201 4800 Oak Grove Drive United States AIAA United States EDL Systems and Advanced Technologies Group System Engineering Section M/S 301-490 Mobility and Robotic Systems Section M/S 198-235 United States Computer Vision Group Mobility and Robotics Systems Section M/S 198-235 United States Autonomous Systems Division M/S 198-105
In April 2006, a terrain-relative navigation experiment successfully flew on a sounding rocket mission at White Sands Missile Range. The mission was designated by NASA/Wallops Flight Facility as 41.068 NT/Seybold (&qu... 详细信息
来源: 评论
Intervention AUVs: The Next Challenge
收藏 引用
IFAC Proceedings Volumes 2014年 第3期47卷 12146-12159页
作者: Pere Ridao Marc Carreras David Ribas Pedro J. Sanz Gabriel Oliver Computer Vision and Robotics Research Institute Scientific and Technological Park of the University of Girona CIRS Building C/ Pic de Peguera CO 17071 Girona Catalonia - Spain Universitat Jaume I (UJI) Av. Vicent Sos Banyat S/N 12006 Castelln Spain Universitat de les Illes Balears (UIB) Cra. Valldemossa Km 7.5 07122 Palma Spain
While commercially available AUVs are routinely used in survey missions, a new set of applications exists which clearly demand intervention capabilities. The maintenance of: permanent observatories underwater; submerg... 详细信息
来源: 评论
PIPAL: a Large-Scale Image Quality Assessment Dataset for Perceptual Image Restoration
arXiv
收藏 引用
arXiv 2020年
作者: Gu, Jinjin Cai, Haoming Chen, Haoyu Ye, Xiaoxing Ren, Jimmy S. Dong, Chao School of Data Science Chinese University of Hong Kong Shenzhen China ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China SenseTime Research SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society China
Image quality assessment (IQA) is the key factor for the fast development of image restoration (IR) algorithms. The most recent IR methods based on Generative Adversarial Networks (GANs) have achieved significant impr... 详细信息
来源: 评论
GM-DF: Generalized Multi-Scenario Deepfake Detection
arXiv
收藏 引用
arXiv 2024年
作者: Lai, Yingxin Yu, Zitong Yang, Jing Li, Bin Kang, Xiangui Shen, Linlin The School of Computing and Information Technology Great Bay University Dongguan523000 China National Engineering Laboratory for Big Data System Computing Technology Shenzhen University Shenzhen518060 China Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen University Shenzhen518060 China The Guangdong Key Laboratory of Information Security The School of Computer Science and Engineering Sun Yat-sen University Guangzhou510080 China Computer Vision Institute School of Computer Science & Software Engineering Shenzhen Institute of Artificial Intelligence and Robotics for Society Guangdong Key Laboratory of Intelligent Information Processing National Engineering Laboratory for Big Data System Computing Technology Shenzhen University Shenzhen518060 China
Existing face forgery detection usually follows the paradigm of training models in a single domain, which leads to limited generalization capacity when unseen scenarios and unknown attacks occur. In this paper, we ela... 详细信息
来源: 评论
TTPP: Temporal transformer with progressive prediction for efficient action anticipation
arXiv
收藏 引用
arXiv 2020年
作者: Wang, Wen Peng, Xiaojiang Su, Yanzhou Qiao, Yu Cheng, Jian School of Information and Communication Engineering University of Electronic Science and Technology of China Chengdu Sichuan611731 China ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab. Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society
Video action anticipation aims to predict future action categories from observed frames. Current state-of-the-art approaches mainly resort to recurrent neural networks to encode history information into hidden states,... 详细信息
来源: 评论