咨询与建议

限定检索结果

文献类型

  • 257 篇 会议
  • 211 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 469 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 284 篇 工学
    • 174 篇 计算机科学与技术...
    • 162 篇 软件工程
    • 89 篇 光学工程
    • 65 篇 控制科学与工程
    • 59 篇 信息与通信工程
    • 52 篇 生物医学工程(可授...
    • 52 篇 生物工程
    • 39 篇 机械工程
    • 32 篇 电气工程
    • 22 篇 电子科学与技术(可...
    • 19 篇 仪器科学与技术
    • 17 篇 土木工程
    • 16 篇 船舶与海洋工程
    • 14 篇 化学工程与技术
    • 12 篇 建筑学
    • 10 篇 交通运输工程
    • 9 篇 安全科学与工程
    • 8 篇 力学(可授工学、理...
  • 170 篇 理学
    • 83 篇 物理学
    • 63 篇 数学
    • 54 篇 生物学
    • 26 篇 统计学(可授理学、...
    • 14 篇 化学
  • 52 篇 管理学
    • 33 篇 图书情报与档案管...
    • 23 篇 管理科学与工程(可...
    • 8 篇 工商管理
  • 36 篇 医学
    • 33 篇 临床医学
    • 31 篇 基础医学(可授医学...
    • 17 篇 药学(可授医学、理...
    • 16 篇 公共卫生与预防医...
  • 7 篇 法学
  • 3 篇 经济学
  • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 军事学

主题

  • 41 篇 computer vision
  • 35 篇 cameras
  • 25 篇 robot vision sys...
  • 16 篇 robot sensing sy...
  • 15 篇 robots
  • 15 篇 navigation
  • 14 篇 autonomous under...
  • 13 篇 trajectory
  • 13 篇 training
  • 12 篇 underwater vehic...
  • 12 篇 laboratories
  • 12 篇 feature extracti...
  • 11 篇 semantics
  • 11 篇 image reconstruc...
  • 10 篇 face recognition
  • 10 篇 convolution
  • 9 篇 motion estimatio...
  • 9 篇 object detection
  • 9 篇 magnetic resonan...
  • 9 篇 application soft...

机构

  • 27 篇 university of ch...
  • 26 篇 shenzhen institu...
  • 21 篇 siat branch shen...
  • 17 篇 institutes for r...
  • 16 篇 institute of rob...
  • 16 篇 national enginee...
  • 14 篇 computer vision ...
  • 13 篇 guangdong key la...
  • 13 篇 shenzhen key lab...
  • 12 篇 computer vision ...
  • 12 篇 shenyang institu...
  • 8 篇 computer vision ...
  • 8 篇 computer vision ...
  • 7 篇 computer vision ...
  • 7 篇 key laboratory o...
  • 7 篇 computer vision ...
  • 7 篇 innopolis univer...
  • 6 篇 robotics institu...
  • 6 篇 research institu...
  • 6 篇 computer vision ...

作者

  • 36 篇 shen linlin
  • 23 篇 qiao yu
  • 17 篇 pere ridao
  • 14 篇 xie weicheng
  • 13 篇 martí robert
  • 12 篇 marc carreras
  • 11 篇 valverde sergi
  • 11 篇 oliver arnau
  • 10 篇 r. garcia
  • 9 篇 x. cufi
  • 9 篇 narcís palomeras
  • 9 篇 lladó xavier
  • 9 篇 linlin shen
  • 8 篇 song siyang
  • 8 篇 wang yali
  • 8 篇 cabezas mariano
  • 8 篇 luo cheng
  • 8 篇 in so kweon
  • 8 篇 li qiufu
  • 7 篇 elbatel marawan

语言

  • 451 篇 英文
  • 17 篇 其他
  • 1 篇 中文
检索条件"机构=Computer Vision and Robotics Institute"
469 条 记 录,以下是431-440 订阅
排序:
A comprehensive study on temporal modeling for online action detection
arXiv
收藏 引用
arXiv 2020年
作者: Wang, Wen Peng, Xiaojiang Qiao, Yu Cheng, Jian School of Information and Communication Engineering University of Electronic Science and Technology of China Chengdu Sichuan611731 China ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences
—Online action detection (OAD) is a practical yet challenging task, which has attracted increasing attention in recent years. A typical OAD system mainly consists of three modules: a frame-level feature extractor whi... 详细信息
来源: 评论
Multiparametric benthic landers for monitoring fishing-impacted deep-sea ecosystems
Multiparametric benthic landers for monitoring fishing-impac...
收藏 引用
OCEANS
作者: Daniel Mihai Toma Jacopo Aguzzi Matias Carandell Marc Nogueras Enoc Martínez Marco Francescangeli Damianos Chatzievangelou Nixon Bahamon Joan Baptista Company Jordi Grinyo Marc Carreras Sascha Flögel Joaquín del Río SARTI Research Group Universitat Politècnica de Catalunya Vilanova i la Geltrú Spain Instituto de Ciencias del Mar Consejo Superior de Investigaciones Científicas Barcelona Spain Department of Ocean Systems NIOZ Royal Netherlands Institute for Sea Research Den Burg The Netherlands Computer Vision and Robotics Institute University of Girona Girona Spain GEOMAR Helmholtz Centre for Ocean Research Kiel Kiel Germany
To assess conservation efforts and follow the effects of anthropogenic pressures, it is crucial to monitor the ecological status of benthic habitats. Monitoring requires measurements that are made on-site, reproduced ...
来源: 评论
MFCLIP: Multi-modal Fine-grained CLIP for Generalizable Diffusion Face Forgery Detection
arXiv
收藏 引用
arXiv 2024年
作者: Zhang, Yaning Wang, Tianyi Yu, Zitong Gao, Zan Shen, Linlin Chen, Shengyong Jinan250353 China Nanyang Technological University 50 Nanyang Ave Block N 4 639798 Singapore School of Computing and Information Technology Great Bay University Dongguan523000 China National Engineering Laboratory for Big Data System Computing Technology Shenzhen University Shenzhen518060 China Jinan250014 China The Key Laboratory of Computer Vision and System Ministry of Education Tianjin University of Technology Tianjin300384 China Computer Vision Institute College of Computer Science and Software Engineering Shenzhen University Shenzhen518060 China National Engineering Laboratory for Big Data System Computing Technology Shenzhen University Shenzhen China Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen518129 China Guangdong Key Laboratory of Intelligent Information Processing Shenzhen University Shenzhen518060 China
The rapid development of photo-realistic face generation methods has raised significant concerns in society and academia, highlighting the urgent need for robust and generalizable face forgery detection (FFD) techniqu... 详细信息
来源: 评论
Flexible disaster response of tomorrow final presentation and evaluation of the CENTAURO system
arXiv
收藏 引用
arXiv 2019年
作者: Klamt, Tobias Rodriguez, Diego Baccelliere, Lorenzo Chen, Xi Chiaradia, Domenico Cichon, Torben Gabardi, Maßimiliano Guria, Paolo Holmquist, Karl Kamedula, Malgorzata Karaoguz, Hakan Kashiri, Navvab Laurenzi, Arturo Lenz, Christian Leonardis, Daniele Hoffman, Enrico Mingo Muratore, Luca Pavlichenko, Dmytro Porcini, Francesco Ren, Zeyu Schilling, Fabian Schwarz, Max Solazzi, Maßimiliano Felsberg, Michael Frisoli, Antonio Gustmann, Michael Jensfelt, Patric Nordberg, Klas Roßmann, Jürgen Süß, Uwe Tsagarakis, Nikos G. Behnke, Sven Autonomous Intelligent Systems University of Bonn Germany Humanoids and Human-Centred Mechatronics Istituto Italiano di Tecnologia Genoa Italy Department of Robotics Perception and Learning KTH Royal Institute of Technology Stockholm Sweden PERCRO Laboratory TeCIP Institute Sant'Anna School of Advanced Studies Pisa Italy Institute for Man-Machine Interaction RWTH Aachen University Germany Computer Vision Laboratory Linköping University Sweden Lausanne Switzerland Kerntechnische Hilfsdienst GmbH Karlsruhe Germany School of Electrical and Electronic Engineering University of Manchester United Kingdom
来源: 评论
Line Drawing Guided Progressive Inpainting of Mural Damage
arXiv
收藏 引用
arXiv 2022年
作者: Li, Luxi Zou, Qin Zhang, Fan Yu, Hongkai Chen, Long Song, Chengfang Huang, Xianfeng Wang, Xiaoguang Li, Qingquan Department of Computer Science Technology United International College of Beijing Normal University HongKong Baptist University Zhuhai China Machine Vision and Robotics Laboratory School of Computer Science Wuhan University Wuhan China State Key Laboratory of Surveying Mapping and Remote Sensing Information Engineering Wuhan University Wuhan China Department of Electrical Engineering and Computer Science Cleveland State University OH United States Institute of Automation Chinese Academy of Sciences Beijing China Cultural Heritage Intelligent Computing Laboratory Wuhan University Wuhan China Guangming Laboratory Shenzhen University Shenzhen China
Mural image inpainting is far less explored compared to its natural image counterpart and remains largely unsolved. Most existing image-inpainting methods tend to take the target image as the only input and directly r... 详细信息
来源: 评论
Gaussian curvature filter on 3d mesh
arXiv
收藏 引用
arXiv 2020年
作者: Tang, Wenming Gong, Yuanhao Liu, Kanglin Liu, Jun Pan, Wei Liu, Bozhi Qiu, Guoping College of Information Engineering Shenzhen University Guangdong Key Laboratory of Intelligent Information Processing Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen China School of Mechanical & Automotive Engineering South China University of Technology Department of Research and Development OPT Machine Vision Tech Co. Ltd Jinsheng Road Changan Dongguan Guangdong523860 China School of Computer Science University of Nottingham NottinghamNG8 1BB United Kingdom
Minimizing Gaussian curvature of meshes is fundamentally important for obtaining smooth and developable surfaces. However, there is a lack of computationally efficient and robust Gaussian curvature optimization method... 详细信息
来源: 评论
Deep Learning Methods for Ship Classification: From Visible to Infrared Images
Deep Learning Methods for Ship Classification: From Visible ...
收藏 引用
robotics, Intelligent Control and Artificial Intelligence (RICAI), International Conference on
作者: Tianci Liu Hengjia Qin Zhuo Zhan Yunpeng Liu Chinese Academy of Sciences Shenyang Institute of Automation Shenyang China Chinese Academy of Sciences Institutes for Robotics and Intelligent Manufacturing Shenyang China University of Chinese Academy of Sciences Beijing China Key Laboratory of Opto-Electronic Information Processing Chinese Academy of Sciences Shenyang China Key Laboratory of Image Understanding and Computer Vision Shenyang Liaoning Province China The Third Military Representative Office of the Air Force Equipment Department in Shenyang Region Shenyang Liaoning Province China
Deep learning methods have achieved excellent performances on visual tasks of target recognition and classification. The rapid development of autonomous seafaring vessels comes up with the requirement to recognize oth...
来源: 评论
Few-Shot Medical Image Segmentation with High-Fidelity Prototypes
arXiv
收藏 引用
arXiv 2024年
作者: Tang, Song Yan, Shaxu Qi, Xiaozhi Gao, Jianxin Ye, Mao Zhang, Jianwei Zhu, Xiatian IMI Group School of Health Sciences and Engineering University of Shanghai for Science and Technology Shanghai China TAMS Group Department of Informatics Universität Hamburg Hamburg Germany School of Computer Science and Engineering University of Electronic Science and Technology of China Chengdu China Surrey Institute for People-Centred Artificial Intelligence Centre for Vision Speech and Signal Processing University of Surrey Guildford United Kingdom Shenzhen Key Laboratory of Minimally Invasive Surgical Robotics and System Shenzhen Institute of Advanced Technology Chinese Academy of Sciences China
Few-shot Semantic Segmentation (FSS) aims to adapt a pretrained model to new classes with as few as a single labelled training sample per class. Despite the prototype based approaches have achieved substantial success... 详细信息
来源: 评论
Control Strategies for a Humanoid Robot to Drive and then Egress a Utility Vehicle for Remote Approach
Control Strategies for a Humanoid Robot to Drive and then Eg...
收藏 引用
IEEE-RAS International Conference on Humanoid Robots
作者: Hyobin Jeong Jaesung Oh Mingeuk Kim Kyungdon Joo In So Kweon Jun-Ho Oh Humanoid Research Center School of Mechanical Aerospace & Systems Engineering Department of Mechanical Engineering Korea Advanced Institute of Science and Technology Robotics and Computer Vision Laboratory School of Mechanical Aerospace & Systems Engineering Department of Electrical Engineering Korea Advanced Institute of Science and Technology Department of Electrical Engineering KAIST
This paper proposes strategies for the driving and egress of a vehicle with a humanoid robot. To drive the vehicle, the RANSAC method was used to detect obstacles, and the Wagon model was used to control the steering ... 详细信息
来源: 评论
Edge-based algorithm for discontinuity adaptive color image smoothing
收藏 引用
Pattern Recognition 2001年 第2期34卷 333-342页
作者: Kang, Dong Joong Kweon, In So Signal Processing Lab. Samsung Adv. Institute of Technology P.O. Box 111 Suwon 440-600 Korea Republic of Robotics and Computer Vision Lab. Department of Electrical Engineering Korea Adv. Inst. Sci. and Technol. 207-43 Cheong. Dongdaemoon-Gu Seoul United States Pusan National University Pusan Korea Republic of KAIST Seoul Korea Republic of Seoul National University Seoul Korea Republic of Carnegie Mellon University Pittsburgh PA United States
We present a new scheme to increase the performance of edge-preserving image smoothing algorithm from the parameter tuning of a Markov random field (MRF) function. This method is based on an automatic control of the i... 详细信息
来源: 评论