咨询与建议

限定检索结果

文献类型

  • 439 篇 会议
  • 205 篇 期刊文献

馆藏范围

  • 644 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 322 篇 工学
    • 211 篇 计算机科学与技术...
    • 186 篇 软件工程
    • 101 篇 控制科学与工程
    • 76 篇 光学工程
    • 66 篇 信息与通信工程
    • 52 篇 生物工程
    • 43 篇 机械工程
    • 31 篇 生物医学工程(可授...
    • 30 篇 电气工程
    • 30 篇 电子科学与技术(可...
    • 25 篇 交通运输工程
    • 22 篇 仪器科学与技术
    • 17 篇 土木工程
    • 13 篇 安全科学与工程
    • 12 篇 动力工程及工程热...
    • 12 篇 建筑学
    • 11 篇 化学工程与技术
    • 8 篇 力学(可授工学、理...
  • 167 篇 理学
    • 74 篇 物理学
    • 63 篇 数学
    • 53 篇 生物学
    • 27 篇 统计学(可授理学、...
    • 12 篇 化学
    • 9 篇 系统科学
  • 61 篇 管理学
    • 39 篇 管理科学与工程(可...
    • 28 篇 图书情报与档案管...
    • 16 篇 工商管理
  • 24 篇 医学
    • 23 篇 临床医学
    • 19 篇 基础医学(可授医学...
    • 14 篇 药学(可授医学、理...
  • 8 篇 农学
  • 6 篇 法学
  • 4 篇 经济学
  • 4 篇 教育学
  • 1 篇 哲学
  • 1 篇 文学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 125 篇 computer vision
  • 105 篇 robot vision sys...
  • 80 篇 cameras
  • 68 篇 laboratories
  • 56 篇 intelligent robo...
  • 50 篇 robot sensing sy...
  • 42 篇 layout
  • 41 篇 robustness
  • 36 篇 humans
  • 28 篇 object detection
  • 26 篇 mobile robots
  • 25 篇 robotics and aut...
  • 24 篇 feature extracti...
  • 24 篇 robot kinematics
  • 22 篇 vehicle detectio...
  • 22 篇 navigation
  • 22 篇 shape
  • 21 篇 vehicles
  • 20 篇 computer science
  • 20 篇 machine vision

机构

  • 28 篇 computer vision ...
  • 22 篇 university of ch...
  • 21 篇 shenzhen institu...
  • 20 篇 artificial intel...
  • 17 篇 institutes for r...
  • 16 篇 computer vision ...
  • 16 篇 national enginee...
  • 16 篇 shenzhen key lab...
  • 15 篇 embedded vision ...
  • 13 篇 computer vision ...
  • 13 篇 guangdong key la...
  • 12 篇 computer vision ...
  • 12 篇 shenyang institu...
  • 10 篇 computer vision ...
  • 9 篇 department of el...
  • 7 篇 key laboratory o...
  • 7 篇 embedded vision ...
  • 7 篇 computer vision ...
  • 6 篇 computer vision ...
  • 6 篇 computer vision ...

作者

  • 56 篇 m.m. trivedi
  • 32 篇 shen linlin
  • 30 篇 kryjak tomasz
  • 23 篇 n.p. papanikolop...
  • 20 篇 mohan m. trivedi
  • 19 篇 in so kweon
  • 17 篇 trivedi mohan m.
  • 17 篇 douglas g. macha...
  • 16 篇 zhang hong
  • 13 篇 c.e. smith
  • 12 篇 xie weicheng
  • 10 篇 j.c. mccall
  • 10 篇 hong zhang
  • 9 篇 kweon in so
  • 9 篇 linlin shen
  • 8 篇 tang chao
  • 8 篇 m. trivedi
  • 8 篇 lyons damian m.
  • 8 篇 song siyang
  • 8 篇 szolc hubert

语言

  • 622 篇 英文
  • 21 篇 其他
  • 1 篇 中文
检索条件"机构=Computer Vision and Robotics Laboratory Computer Vision and Robotics Laboratory"
644 条 记 录,以下是91-100 订阅
排序:
Augmented Box Replay: Overcoming Foreground Shift for Incremental Object Detection
Augmented Box Replay: Overcoming Foreground Shift for Increm...
收藏 引用
International Conference on computer vision (ICCV)
作者: Yuyang Liu Yang Cong Dipam Goswami Xialei Liu Joost van de Weijer State Key Laboratory of Robotics Shenyang Institute of Automation Chinese Academy of Sciences Institutes for Robotics and Intelligent Manufacturing Chinese Academy of Sciences University of Chinese Academy of Sciences South China University of Technology Computer Vision Center Barcelona VCIP CS Nankai University Department of Computer Science Universitat Autònoma de Barcelona
In incremental learning, replaying stored samples from previous tasks together with current task samples is one of the most efficient approaches to address catastrophic forgetting. However, unlike incremental classifi...
来源: 评论
Edge-guided Representation Learning for Underwater Object Detection
arXiv
收藏 引用
arXiv 2023年
作者: Dai, Linhui Liu, Hong Song, Pinhao Tang, Hao Ding, Runwei Li, Shengquan Key Laboratory of Machine Perception Shenzhen Graduate School Peking University Shenzhen China Robotics Research Group KU Leuven Leuven Belgium Computer Vision Lab ETH Zurich Zurich Switzerland Peng Cheng Laboratory Shenzhen China
Underwater object detection (UOD) is crucial for marine economic development, environmental protection, and the planet’s sustainable development. The main challenges of this task arise from low-contrast, small object... 详细信息
来源: 评论
Task-Oriented Grasp Prediction with Visual-Language Inputs
Task-Oriented Grasp Prediction with Visual-Language Inputs
收藏 引用
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
作者: Chao Tang Dehao Huang Lingxiao Meng Weiyu Liu Hong Zhang Shenzhen Key Laboratory of Robotics and Computer Vision Southern University of Science and Technology Shenzhen China Department of Electronic and Electrical Engineering Southern University of Science and Technology Shenzhen China Stanford University United States
To perform household tasks, assistive robots receive commands in the form of user language instructions for tool manipulation. The initial stage involves selecting the intended tool (i.e., object grounding) and graspi...
来源: 评论
SWCF-Net: Similarity-weighted Convolution and Local-global Fusion for Efficient Large-scale Point Cloud Semantic Segmentation
arXiv
收藏 引用
arXiv 2024年
作者: Lin, Zhenchao He, Li Yang, Hongqiang Sun, Xiaoqun Zhang, Guojin Chen, Weinan Guan, Yisheng Zhang, Hong School of Electromechanical Engineering Guangdong University of Technology Guangzhou China Department of Electronic and Electrical Engineering Southern University of Science and Technology China Shenzhen Key Laboratory of Robotics and Computer Vision China Meituan Technology Co. Ltd Shenzhen China
Large-scale point cloud consists of a multitude of individual objects, thereby encompassing rich structural and underlying semantic contextual information, resulting in a challenging problem in efficiently segmenting ... 详细信息
来源: 评论
A Single 2D Pose with Context is Worth Hundreds for 3D Human Pose Estimation
arXiv
收藏 引用
arXiv 2023年
作者: Zhao, Qitao Zheng, Ce Liu, Mengyuan Chen, Chen Robotics Institute Carnegie Mellon University United States Center for Research in Computer Vision University of Central Florida United States Key Laboratory of Machine Perception Peking University Shenzhen Graduate School China
The dominant paradigm in 3D human pose estimation that lifts a 2D pose sequence to 3D heavily relies on long-term temporal clues (i.e., using a daunting number of video frames) for improved accuracy, which incurs perf... 详细信息
来源: 评论
FeCAM: Exploiting the Heterogeneity of Class Distributions in Exemplar-Free Continual Learning
arXiv
收藏 引用
arXiv 2023年
作者: Goswami, Dipam Liu, Yuyang Twardowski, Bartlomiej van de Weijer, Joost Department of Computer Science Universitat Autònoma de Barcelona Spain Computer Vision Center Barcelona Spain University of Chinese Academy of Sciences China State Key Laboratory of Robotics Shenyang Institute of Automation Chinese Academy of Sciences China Institutes for Robotics and Intelligent Manufacturing Chinese Academy of Sciences China IDEAS-NCBR
Exemplar-free class-incremental learning (CIL) poses several challenges since it prohibits the rehearsal of data from previous tasks and thus suffers from catastrophic forgetting. Recent approaches to incrementally le... 详细信息
来源: 评论
Adaptive Generalized Social Space Delimitation for Human-Robot Interaction Tasks
Adaptive Generalized Social Space Delimitation for Human-Rob...
收藏 引用
IEEE Latin American robotics Symposium, LARS
作者: Manuela M. F. Silva Aline F. F. Silva Douglas G. Macharet Department of Computer Science Computer Vision and Robotics Laboratory (VeRLab) Universidade Federal de Minas Gerais Belo Horizonte MG Brazil Laboratório de Inteligência Computacional e Robótica (LICRo) Instituto Federal do Triângulo Mineiro (IFTM) Campus Patrocínio Brazil
Human-Robot Interaction (HRI) research is of paramount importance as it addresses the rapidly evolving landscape where robots are increasingly integrated into everyday life. Social spaces refer to the invisible zones ... 详细信息
来源: 评论
Fast Candidate Region Extraction for SAR Ship Target  37
Fast Candidate Region Extraction for SAR Ship Target
收藏 引用
37th Youth Academic Annual Conference of Chinese Association of Automation, YAC 2022
作者: Zhang, Panpan Luo, Haibo Xu, Zheng He, Miao Shenyang Institute of Automation Shenyang110016 China Institutes for Robotics and Intelligent Manufacturing Shenyang110016 China University of Chinese Academy of Sciences Beijing100049 China Key Laboratory of Opto-Electronic Information Processing Shenyang110016 China The Key Lab of Image Understanding and Computer Vision Shenyang110016 China
At present, deep learning technology is widely used in ship target detection in synthetic aperture radar (SAR) images. However, high-resolution remote sensing SAR images cover a larger area and have larger image sizes... 详细信息
来源: 评论
CSSL-MHTR: Continual Self-Supervised Learning for Scalable Multi-script Handwritten Text Recognition
arXiv
收藏 引用
arXiv 2023年
作者: Dhiaf, Marwa Souibgui, Mohamed Ali Wang, Kai Liu, Yuyang Kessentini, Yousri Fornés, Alicia Rouhou, Ahmed Cheikh InstaDeep United Kingdom Computer Vision Center UAB Spain Digital Research Center of Sfax SM@RTS Tunisia State Key Laboratory of Robotics China Shenyang Institute of Automation Chinese Academy of Sciences China
Self-supervised learning has recently emerged as a strong alternative in document analysis. These approaches are now capable of learning high-quality image representations and overcoming the limitations of supervised ... 详细信息
来源: 评论
A vision Based Hardware-Software Real-Time Control System for the Autonomous Landing of an UAV  1
收藏 引用
International Conference on computer vision and Graphics, ICCVG 2020
作者: Blachut, Krzysztof Szolc, Hubert Wasala, Mateusz Kryjak, Tomasz Gorgon, Marek Embedded Vision Systems Group Computer Vision Laboratory Department of Automatic Control and Robotics AGH University of Science and Technology Krakow Poland
In this paper we present a vision based hardware-software control system enabling the autonomous landing of a multirotor unmanned aerial vehicle (UAV). It allows for the detection of a marked landing pa... 详细信息
来源: 评论