咨询与建议

限定检索结果

文献类型

  • 441 篇 会议
  • 207 篇 期刊文献

馆藏范围

  • 648 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 321 篇 工学
    • 210 篇 计算机科学与技术...
    • 185 篇 软件工程
    • 100 篇 控制科学与工程
    • 75 篇 光学工程
    • 66 篇 信息与通信工程
    • 52 篇 生物工程
    • 42 篇 机械工程
    • 31 篇 生物医学工程(可授...
    • 30 篇 电气工程
    • 30 篇 电子科学与技术(可...
    • 25 篇 交通运输工程
    • 21 篇 仪器科学与技术
    • 17 篇 土木工程
    • 13 篇 安全科学与工程
    • 12 篇 动力工程及工程热...
    • 12 篇 建筑学
    • 11 篇 化学工程与技术
    • 8 篇 力学(可授工学、理...
  • 166 篇 理学
    • 73 篇 物理学
    • 63 篇 数学
    • 53 篇 生物学
    • 27 篇 统计学(可授理学、...
    • 12 篇 化学
    • 9 篇 系统科学
  • 61 篇 管理学
    • 39 篇 管理科学与工程(可...
    • 28 篇 图书情报与档案管...
    • 16 篇 工商管理
  • 25 篇 医学
    • 23 篇 临床医学
    • 19 篇 基础医学(可授医学...
    • 14 篇 药学(可授医学、理...
  • 8 篇 农学
  • 6 篇 法学
  • 4 篇 经济学
  • 4 篇 教育学
  • 1 篇 哲学
  • 1 篇 文学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 125 篇 computer vision
  • 105 篇 robot vision sys...
  • 80 篇 cameras
  • 68 篇 laboratories
  • 56 篇 intelligent robo...
  • 50 篇 robot sensing sy...
  • 42 篇 layout
  • 41 篇 robustness
  • 36 篇 humans
  • 28 篇 object detection
  • 26 篇 mobile robots
  • 25 篇 robotics and aut...
  • 24 篇 feature extracti...
  • 24 篇 robot kinematics
  • 23 篇 navigation
  • 22 篇 vehicle detectio...
  • 22 篇 shape
  • 21 篇 vehicles
  • 20 篇 computer science
  • 20 篇 machine vision

机构

  • 28 篇 computer vision ...
  • 22 篇 university of ch...
  • 21 篇 shenzhen institu...
  • 20 篇 artificial intel...
  • 17 篇 institutes for r...
  • 16 篇 computer vision ...
  • 16 篇 national enginee...
  • 16 篇 shenzhen key lab...
  • 15 篇 computer vision ...
  • 15 篇 embedded vision ...
  • 13 篇 guangdong key la...
  • 12 篇 computer vision ...
  • 12 篇 shenyang institu...
  • 10 篇 computer vision ...
  • 9 篇 department of el...
  • 7 篇 key laboratory o...
  • 7 篇 embedded vision ...
  • 7 篇 computer vision ...
  • 6 篇 computer vision ...
  • 6 篇 computer vision ...

作者

  • 56 篇 m.m. trivedi
  • 32 篇 shen linlin
  • 30 篇 kryjak tomasz
  • 23 篇 n.p. papanikolop...
  • 20 篇 mohan m. trivedi
  • 19 篇 in so kweon
  • 17 篇 trivedi mohan m.
  • 17 篇 douglas g. macha...
  • 16 篇 zhang hong
  • 13 篇 c.e. smith
  • 12 篇 xie weicheng
  • 11 篇 linlin shen
  • 10 篇 j.c. mccall
  • 10 篇 hong zhang
  • 9 篇 kweon in so
  • 8 篇 tang chao
  • 8 篇 m. trivedi
  • 8 篇 lyons damian m.
  • 8 篇 song siyang
  • 8 篇 szolc hubert

语言

  • 627 篇 英文
  • 20 篇 其他
  • 1 篇 中文
检索条件"机构=Computer Vision and Robotics Laboratory Computer Vision and Robotics Laboratory"
648 条 记 录,以下是121-130 订阅
排序:
CodeEnhance: A Codebook-Driven Approach for Low-Light Image Enhancement
arXiv
收藏 引用
arXiv 2024年
作者: Wu, Xu Hou, XianXu Lai, Zhihui Zhou, Jie Zhang, Ya-Nan Pedrycz, Witold Shen, Linlin The Computer Vision Institute College of Computer Science and Software Engineering Shenzhen University Shenzhen518060 China Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen518060 China Guangdong Key Laboratory of Intelligent Information Processing Shenzhen University Shenzhen518060 China School of AI and Advanced Computing Xi’an Jiaotong-Liverpool University China National Engineering Laboratory for Big Data System Computing Technology Shenzhen University SZU Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society Guangdong Shenzhen518060 China The Department of Electrical & Computer Engineering University of Alberta University of Alberta Canada
Low-light image enhancement (LLIE) aims to improve low-illumination images. However, existing methods face two challenges: (1) uncertainty in restoration from diverse brightness degradations;(2) loss of texture and co... 详细信息
来源: 评论
Learning Multi-dimensional Edge Feature-based AU Relation Graph for Facial Action Unit Recognition
arXiv
收藏 引用
arXiv 2022年
作者: Luo, Cheng Song, Siyang Xie, Weicheng Shen, Linlin Gunes, Hatice Computer Vision Institute Shenzhen University China Shenzhen Institute of Artificial Intelligence and Robotics for Society China Guangdong Key Laboratory of Intelligent Information Processing China Department of Computer Science and Technology University of Cambridge United Kingdom
The activations of Facial Action Units (AUs) mutually influence one another. While the relationship between a pair of AUs can be complex and unique, existing approaches fail to specifically and explicitly represent su... 详细信息
来源: 评论
Introducing the structural bases of typicality effects in deep learning
arXiv
收藏 引用
arXiv 2021年
作者: Pino, Omar Vidal Nascimento, Erickson R. Campos, Mario F.M. Computer Vision and Robotics Laboratory Computer Science Department Universidade Federal de Minas Gerais Belo Horizonte31270-010 Brazil
In this paper, we hypothesize that the effects of the degree of typicality in natural semantic categories can be generated based on the structure of artificial categories learned with deep learning models. Motivated b... 详细信息
来源: 评论
GenFace: A Large-Scale Fine-Grained Face Forgery Benchmark and Cross Appearance-Edge Learning
arXiv
收藏 引用
arXiv 2024年
作者: Zhang, Yaning Yu, Zitong Wang, Tianyi Huang, Xiaobin Shen, Linlin Gao, Zan Ren, Jianfeng Computer Vision Institute College of Computer Science and Software Engineering Shenzhen University Shenzhen518060 China School of Computing and Information Technology Great Bay University Dongguan523000 China National Engineering Laboratory for Big Data System Computing Technology Shenzhen University Shenzhen518060 China Nanyang Technological University 50 Nanyang Ave Block N 4 639798 Singapore Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen518129 China Guangdong Key Laboratory of Intelligent Information Processing Shenzhen University China Jinan250014 China Key Laboratory of Computer Vision and System Ministry of Education Tianjin University of Technology Tianjin300384 China School of Computer Science University of Nottingham Ningbo China
The rapid advancement of photorealistic generators has reached a critical juncture where the discrepancy between authentic and manipulated images is increasingly indistinguishable. Thus, benchmarking and advancing tec... 详细信息
来源: 评论
Multi-scale Contrastive Learning for Gastroenteroscopy Classification
Multi-scale Contrastive Learning for Gastroenteroscopy Class...
收藏 引用
Annual IEEE Symposium on computer-Based Medical Systems
作者: Dan Li Xuechen Li Zhibin Peng Wenting Chen Linlin Shen Guangyao Wu Computer Vision Institute School of Computer Science & Software Engineering Shenzhen University National Engineering Laboratory for Big Data System Computing Technology ShenZhen University Shenzhen China City University of Hong Kong Hong Kong SAR China Shenzhen Institute of Artificial Intelligence & Robotics for Society Guangdong Key Laboratory of Intelligent Information Processing Shenzhen University General Hospital
In gastroenteroscopy image analysis, numerous CADs demonstrate that deep learning aids doctors' diagnosis. The shapes and sizes of the lesions are varied. And in the clinic, the dataset appears to be data imbalanc...
来源: 评论
Image-based Navigation in Real-World Environments via Multiple Mid-level Representations: Fusion Models, Benchmark and Efficient Evaluation
arXiv
收藏 引用
arXiv 2022年
作者: Rosano, Marco Furnari, Antonino Gulino, Luigi Santoro, Corrado Farinella, Giovanni Maria FPV@IPLAB - Department of Mathematics and Computer Science University of Catania Catania Italy Robotics Laboratory Department of Mathematics and Computer Science University of Catania Catania Italy OrangeDev s.r.l. Firenze Italy Cognitive Robotics and Social Sensing Laboratory ICAR-CNR Palermo Italy Next Vision s.r.l. Catania Italy
Robot visual navigation is a relevant research topic. Current deep navigation models conveniently learn the navigation policies in simulation, given the large amount of experience they need to collect. Unfortunately, ... 详细信息
来源: 评论
Image-Based Navigation in Real-World Environments Via Multiple Mid-Level Representations: Fusion Models, Benchmark and Efficient Evaluation
SSRN
收藏 引用
SSRN 2022年
作者: Rosano, Marco Furnari, Antonino Gulino, Luigi Santoro, Corrado Farinella, Giovanni Maria FPV@IPLAB Department of Mathematics and Computer Science University of Catania Catania Italy Robotics Laboratory Department of Mathematics and Computer Science University of Catania Catania Italy OrangeDev s.r.l. Firenze Italy Cognitive Robotics and Social Sensing Laboratory ICAR-CNR Palermo Italy Next Vision s.r.l. Catania Italy
Robot visual navigation is a relevant research topic. Current deep navigation models mostly learn the navigation policies in simulation. This is convenient, given the efficiency offered by simulators to collect the re... 详细信息
来源: 评论
Delving into the Scale Variance Problem in Object Detection
arXiv
收藏 引用
arXiv 2022年
作者: Chen, Junliang Zhao, Xiaodong Shen, Linlin Computer Vision Institute School of Computer Science and Software Engineering Shenzhen University China Shenzhen Institute of Artificial Intelligence of Robotics of Society Shenzhen China Guangdong Key Laboratory of Intelligent Information Processing Shenzhen University Shenzhen 518060 China
Object detection has made substantial progress in the last decade, due to the capability of convolution in extracting local context of objects. However, the scales of objects are diverse and current convolution can on... 详细信息
来源: 评论
Selective Multi-Scale Learning for Object Detection
arXiv
收藏 引用
arXiv 2022年
作者: Chen, Junliang Lu, Weizeng Shen, Linlin Computer Vision Institute School of Computer Science and Software Engineering Shenzhen University China Shenzhen Institute of Artificial Intelligence of Robotics of Society Shenzhen China Guangdong Key Laboratory of Intelligent Information Processing Shenzhen University Shenzhen518060 China
Pyramidal networks are standard methods for multi-scale object detection. Current researches on feature pyramid networks usually adopt layer connections to collect features from certain levels of the feature hierarchy... 详细信息
来源: 评论
Correlate-and-excite: Real-time stereo matching via guided cost volume excitation
arXiv
收藏 引用
arXiv 2021年
作者: Bangunharcana, Antyanta Cho, Jae Won Lee, Seokju Kweon, In So Kim, Kyung-Soo Kim, Soohyun Mechatronics Systems and Control Laboratory KAIST Daejeon34141 Korea Republic of Robotics and Computer Vision Laboratory KAIST Daejeon34141 Korea Republic of
Volumetric deep learning approach towards stereo matching aggregates a cost volume computed from input left and right images using 3D convolutions. Recent works showed that utilization of extracted image features and ... 详细信息
来源: 评论