咨询与建议

限定检索结果

文献类型

  • 441 篇 会议
  • 208 篇 期刊文献

馆藏范围

  • 649 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 322 篇 工学
    • 211 篇 计算机科学与技术...
    • 186 篇 软件工程
    • 101 篇 控制科学与工程
    • 76 篇 光学工程
    • 66 篇 信息与通信工程
    • 52 篇 生物工程
    • 43 篇 机械工程
    • 31 篇 生物医学工程(可授...
    • 30 篇 电气工程
    • 30 篇 电子科学与技术(可...
    • 25 篇 交通运输工程
    • 22 篇 仪器科学与技术
    • 17 篇 土木工程
    • 13 篇 安全科学与工程
    • 12 篇 动力工程及工程热...
    • 12 篇 建筑学
    • 11 篇 化学工程与技术
    • 8 篇 力学(可授工学、理...
  • 167 篇 理学
    • 74 篇 物理学
    • 63 篇 数学
    • 53 篇 生物学
    • 27 篇 统计学(可授理学、...
    • 12 篇 化学
    • 9 篇 系统科学
  • 61 篇 管理学
    • 39 篇 管理科学与工程(可...
    • 28 篇 图书情报与档案管...
    • 16 篇 工商管理
  • 25 篇 医学
    • 23 篇 临床医学
    • 19 篇 基础医学(可授医学...
    • 14 篇 药学(可授医学、理...
  • 8 篇 农学
  • 6 篇 法学
  • 4 篇 经济学
  • 4 篇 教育学
  • 1 篇 哲学
  • 1 篇 文学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 125 篇 computer vision
  • 105 篇 robot vision sys...
  • 80 篇 cameras
  • 68 篇 laboratories
  • 56 篇 intelligent robo...
  • 50 篇 robot sensing sy...
  • 42 篇 layout
  • 41 篇 robustness
  • 36 篇 humans
  • 28 篇 object detection
  • 26 篇 mobile robots
  • 25 篇 robotics and aut...
  • 24 篇 feature extracti...
  • 24 篇 robot kinematics
  • 23 篇 navigation
  • 22 篇 vehicle detectio...
  • 22 篇 shape
  • 21 篇 vehicles
  • 20 篇 computer science
  • 20 篇 machine vision

机构

  • 28 篇 computer vision ...
  • 22 篇 university of ch...
  • 21 篇 shenzhen institu...
  • 20 篇 artificial intel...
  • 17 篇 institutes for r...
  • 16 篇 computer vision ...
  • 16 篇 national enginee...
  • 16 篇 shenzhen key lab...
  • 15 篇 computer vision ...
  • 15 篇 embedded vision ...
  • 13 篇 guangdong key la...
  • 12 篇 computer vision ...
  • 12 篇 shenyang institu...
  • 10 篇 computer vision ...
  • 9 篇 department of el...
  • 7 篇 key laboratory o...
  • 7 篇 embedded vision ...
  • 7 篇 computer vision ...
  • 6 篇 computer vision ...
  • 6 篇 computer vision ...

作者

  • 56 篇 m.m. trivedi
  • 32 篇 shen linlin
  • 30 篇 kryjak tomasz
  • 23 篇 n.p. papanikolop...
  • 20 篇 mohan m. trivedi
  • 19 篇 in so kweon
  • 17 篇 trivedi mohan m.
  • 17 篇 douglas g. macha...
  • 16 篇 zhang hong
  • 13 篇 c.e. smith
  • 12 篇 xie weicheng
  • 11 篇 linlin shen
  • 10 篇 j.c. mccall
  • 10 篇 hong zhang
  • 9 篇 kweon in so
  • 8 篇 tang chao
  • 8 篇 m. trivedi
  • 8 篇 lyons damian m.
  • 8 篇 song siyang
  • 8 篇 szolc hubert

语言

  • 627 篇 英文
  • 21 篇 其他
  • 1 篇 中文
检索条件"机构=Computer Vision and Robotics Laboratory Computer Vision and Robotics Laboratory"
649 条 记 录,以下是161-170 订阅
排序:
Deep Learning Methods for Ship Classification: From Visible to Infrared Images
Deep Learning Methods for Ship Classification: From Visible ...
收藏 引用
robotics, Intelligent Control and Artificial Intelligence (RICAI), International Conference on
作者: Tianci Liu Hengjia Qin Zhuo Zhan Yunpeng Liu Chinese Academy of Sciences Shenyang Institute of Automation Shenyang China Chinese Academy of Sciences Institutes for Robotics and Intelligent Manufacturing Shenyang China University of Chinese Academy of Sciences Beijing China Key Laboratory of Opto-Electronic Information Processing Chinese Academy of Sciences Shenyang China Key Laboratory of Image Understanding and Computer Vision Shenyang Liaoning Province China The Third Military Representative Office of the Air Force Equipment Department in Shenyang Region Shenyang Liaoning Province China
Deep learning methods have achieved excellent performances on visual tasks of target recognition and classification. The rapid development of autonomous seafaring vessels comes up with the requirement to recognize oth...
来源: 评论
Anytime Fault-tolerant Adaptive Routing for Multi-Robot Teams
Anytime Fault-tolerant Adaptive Routing for Multi-Robot Team...
收藏 引用
IEEE International Conference on robotics and Automation (ICRA)
作者: Ronaldo F. dos Santos Erickson R. Nascimento Douglas G. Macharet Computer Vision and Robotics Laboratory (VeRLab) Universidade Federal de Minas Gerais MG Brazil Tres Lagoas Campus Universidadeˆ Federal de Mato Grosso do Sul MS Brazil
The Correlated Team Orienteering Problem (CTOP) is a routing problem where the objective is to determine a set of routes that maximizes the summation of collected rewards in the environment while respecting the vehic... 详细信息
来源: 评论
Group-wise Inhibition based Feature Regularization for Robust Classification
Group-wise Inhibition based Feature Regularization for Robus...
收藏 引用
International Conference on computer vision (ICCV)
作者: Haozhe Liu Haoqian Wu Weicheng Xie Feng Liu Linlin Shen Computer Vision Institute College of Computer Science and Software Engineering SZU Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society National Engineering Laboratory for Big Data System Computing Technology Guangdong Key Laboratory of Intelligent Information Processing Shenzhen University Shenzhen China
The convolutional neural network (CNN) is vulnerable to degraded images with even very small variations (e.g. corrupted and adversarial samples). One of the possible reasons is that CNN pays more attention to the most... 详细信息
来源: 评论
Learning Graph Representation of Person-specific Cognitive Processes from Audio-visual Behaviours for Automatic Personality Recognition
arXiv
收藏 引用
arXiv 2021年
作者: Song, Siyang Shao, Zilong Jaiswal, Shashank Shen, Linlin Valstar, Michel Gunes, Hatice Department of Computer Science and Technology University of Cambridge Cambridge United Kingdom Computer Vision Institute Shenzhen University Shenzhen China Shenzhen Institute of Artificial Intelligence of Robotics of Society Shenzhen China Guangdong Key Laboratory of Intelligent Information Processing Shenzhen University Shenzhen China Computer Vision Lab University of Nottingham Nottingham United Kingdom
This paper proposes to recognise the true (self-reported) personality from the learned simulation of the target subject’s cognition. This approach builds on two following findings in cognitive science: (i) human cogn... 详细信息
来源: 评论
Optimisation of a siamese neural network for real-time energy efficient object tracking
TechRxiv
收藏 引用
TechRxiv 2020年
作者: Przewlocka, Dominika Wasala, Mateusz Szolc, Hubert Blachut, Krzysztof Kryjak, Tomasz Embedded Vision Systems Group Computer Vision Laboratory Department of Automatic Control and Robotics AGH University of Science and Technology Krakow Poland
In this paper the research on optimisation of visual object tracking using a Siamese neural network for embedded vision systems is presented. It was assumed that the solution shall operate in real-time, preferably for... 详细信息
来源: 评论
Optimisation of a siamese neural network for real-time energy efficient object tracking
arXiv
收藏 引用
arXiv 2020年
作者: Przewlocka, Dominika Wasala, Mateusz Szolc, Hubert Blachut, Krzysztof Kryjak, Tomasz Embedded Vision Systems Group Computer Vision Laboratory Department of Automatic Control and Robotics AGH University of Science and Technology Krakow Poland
In this paper the research on optimisation of visual object tracking using a Siamese neural network for embedded vision systems is presented. It was assumed that the solution shall operate in real-time, preferably for... 详细信息
来源: 评论
GRATIS: Deep Learning Graph Representation with Task-specific Topology and Multi-dimensional Edge Features
arXiv
收藏 引用
arXiv 2022年
作者: Song, Siyang Song, Yuxin Luo, Cheng Song, Zhiyuan Kuzucu, Selim Jia, Xi Guo, Zhijiang Xie, Weicheng Shen, Linlin Gunes, Hatice The Department of Computer Science and Technology University of Cambridge CambridgeCB3 0FT United Kingdom Baidu Inc Beijing100193 China Computer Vision Institute School of Computer Science & Software Engineering Shenzhen Institute of Artificial Intelligence and Robotics for Society Guangdong Key Laboratory of Intelligent Information Processing Shenzhen University Shenzhen518060 China Department of Computer Engineering Middle East Technical University Ankara Turkey School of Computer Science University of Birmingham Birmingham United Kingdom
Graph is powerful for representing various types of real-world data. The topology (edges’ presence) and edges’ features of a graph decides the message passing mechanism among vertices within the graph. While most ex... 详细信息
来源: 评论
Multiscale Convolutional Transformer with Diverse-aware Feature Learning for Motor Imagery EEG Decoding
收藏 引用
IEEE Transactions on Cognitive and Developmental Systems 2025年
作者: Hang, Wenlong Wang, Junliang Liang, Shuang Lei, Baiying Wang, Qiong Li, Guanglin Chen, Badong Qin, Jing Nanjing Tech University College of Computer Nanjing211816 China Nanjing Tech University Information Engineering Nanjing211816 China Nanjing University of Posts and Telecommunications School of Internet of Things Nanjing210023 China Shenzhen University School of Biomedical Engineering Shenzhen518060 China Guangdong Provincial Key Laboratory of Computer Vision Shenzhen518055 China Virtual Reality Technology Shenzhen518055 China Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems Shenzhen518055 China Shenzhen Institute of Advanced Technology Shenzhen518055 China Chinese Academy of Sciences Shenzhen518055 China Xi'an Jiaotong University Institute of Artificial Intelligence and Robotics Xi'an710049 China Hong Kong Polytechnic University School of Nursing Hung Hom Hong Kong
Electroencephalogram (EEG)-based motor imagery (MI) brain-computer interfaces (BCIs) have significant potential in improving motor function for neurorehabilitation. Despite recent advancements, learning diversified EE... 详细信息
来源: 评论
Cross Domain Object Detection by Target-Perceived Dual Branch Distillation
arXiv
收藏 引用
arXiv 2022年
作者: He, Mengzhe Wang, Yali Wu, Jiaxi Wang, Yiru Li, Hanqing Li, Bo Gan, Weihao Wu, Wei Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences China SenseTime Research University of Chinese Academy of Science China Shanghai AI Laboratory Shanghai China Beihang University China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society China
Cross domain object detection is a realistic and challenging task in the wild. It suffers from performance degradation due to large shift of data distributions and lack of instance-level annotations in the target doma... 详细信息
来源: 评论
Abstract: Learning to avoid poor images: towards task-aware c-arm cone-beam ct trajectories
Abstract: Learning to avoid poor images: towards task-aware ...
收藏 引用
International workshop on Algorithmen - Systeme - Anwendungen, 2020
作者: Zaech, Jan-Nico Gao, Cong Bier, Bastian Taylor, Russell Maier, Andreas Navab, Nassir Unberath, Mathias Laboratory for Computational Sensing and Robotics Johns Hopkins University Baltimore United States Pattern Recognition Lab Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen Germany Computer Vision Laboratory Eidgenössische Technische Hochschule Zürich Zürich Germany
Metal artifacts in computed tomography (CT) arise from a mismatch between physics of image formation and idealized assumptions during tomographic reconstruction. These artifacts are particularly strong around metal im... 详细信息
来源: 评论