咨询与建议

限定检索结果

文献类型

  • 441 篇 会议
  • 208 篇 期刊文献

馆藏范围

  • 649 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 322 篇 工学
    • 211 篇 计算机科学与技术...
    • 186 篇 软件工程
    • 101 篇 控制科学与工程
    • 76 篇 光学工程
    • 66 篇 信息与通信工程
    • 52 篇 生物工程
    • 43 篇 机械工程
    • 31 篇 生物医学工程(可授...
    • 30 篇 电气工程
    • 30 篇 电子科学与技术(可...
    • 25 篇 交通运输工程
    • 22 篇 仪器科学与技术
    • 17 篇 土木工程
    • 13 篇 安全科学与工程
    • 12 篇 动力工程及工程热...
    • 12 篇 建筑学
    • 11 篇 化学工程与技术
    • 8 篇 力学(可授工学、理...
  • 167 篇 理学
    • 74 篇 物理学
    • 63 篇 数学
    • 53 篇 生物学
    • 27 篇 统计学(可授理学、...
    • 12 篇 化学
    • 9 篇 系统科学
  • 61 篇 管理学
    • 39 篇 管理科学与工程(可...
    • 28 篇 图书情报与档案管...
    • 16 篇 工商管理
  • 25 篇 医学
    • 23 篇 临床医学
    • 19 篇 基础医学(可授医学...
    • 14 篇 药学(可授医学、理...
  • 8 篇 农学
  • 6 篇 法学
  • 4 篇 经济学
  • 4 篇 教育学
  • 1 篇 哲学
  • 1 篇 文学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 125 篇 computer vision
  • 105 篇 robot vision sys...
  • 80 篇 cameras
  • 68 篇 laboratories
  • 56 篇 intelligent robo...
  • 50 篇 robot sensing sy...
  • 42 篇 layout
  • 41 篇 robustness
  • 36 篇 humans
  • 28 篇 object detection
  • 26 篇 mobile robots
  • 25 篇 robotics and aut...
  • 24 篇 feature extracti...
  • 24 篇 robot kinematics
  • 23 篇 navigation
  • 22 篇 vehicle detectio...
  • 22 篇 shape
  • 21 篇 vehicles
  • 20 篇 computer science
  • 20 篇 machine vision

机构

  • 28 篇 computer vision ...
  • 22 篇 university of ch...
  • 21 篇 shenzhen institu...
  • 20 篇 artificial intel...
  • 17 篇 institutes for r...
  • 16 篇 computer vision ...
  • 16 篇 national enginee...
  • 16 篇 shenzhen key lab...
  • 15 篇 computer vision ...
  • 15 篇 embedded vision ...
  • 13 篇 guangdong key la...
  • 12 篇 computer vision ...
  • 12 篇 shenyang institu...
  • 10 篇 computer vision ...
  • 9 篇 department of el...
  • 7 篇 key laboratory o...
  • 7 篇 embedded vision ...
  • 7 篇 computer vision ...
  • 6 篇 computer vision ...
  • 6 篇 computer vision ...

作者

  • 56 篇 m.m. trivedi
  • 32 篇 shen linlin
  • 30 篇 kryjak tomasz
  • 23 篇 n.p. papanikolop...
  • 20 篇 mohan m. trivedi
  • 19 篇 in so kweon
  • 17 篇 trivedi mohan m.
  • 17 篇 douglas g. macha...
  • 16 篇 zhang hong
  • 13 篇 c.e. smith
  • 12 篇 xie weicheng
  • 11 篇 linlin shen
  • 10 篇 j.c. mccall
  • 10 篇 hong zhang
  • 9 篇 kweon in so
  • 8 篇 tang chao
  • 8 篇 m. trivedi
  • 8 篇 lyons damian m.
  • 8 篇 song siyang
  • 8 篇 szolc hubert

语言

  • 627 篇 英文
  • 21 篇 其他
  • 1 篇 中文
检索条件"机构=Computer Vision and Robotics Laboratory Computer Vision and Robotics Laboratory"
649 条 记 录,以下是181-190 订阅
排序:
Open-set face recognition for small galleries using siamese networks
arXiv
收藏 引用
arXiv 2021年
作者: Salomon, Gabriel Britto, Alceu Vareto, Rafael H. Schwartz, William R. Menotti, David Vision Robotics and Imaging Laboratory Universidade Federal Do Paraná 82590300 Brazil Ppgia Pontifícia Universidade Católica Do Paraná 80215901 Brazil Smart Sense Laboratory Department of Computer Science Universidade Federal de Minas Gerais 31270901 Brazil
Face recognition has been one of the most relevant and explored fields of Biometrics. In real-world applications, face recognition methods usually must deal with scenarios where not all probe individuals were seen dur... 详细信息
来源: 评论
VideoPipe 2022 Challenge: Real-World Video Understanding for Urban Pipe Inspection
arXiv
收藏 引用
arXiv 2022年
作者: Liu, Yi Zhang, Xuan Li, Ying Liang, Guixin Jiang, Yabing Qiu, Lixia Tang, Haiping Xie, Fei Yao, Wei Dai, Yi Qiao, Yu Wang, Yali ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences China Shenzhen Bwell Technology Co. Ltd China Shenzhen Longhua Drainage Co. Ltd China Shanghai AI Laboratory Shanghai China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society China
Video understanding is an important problem in computer vision. Currently, the well-studied task in this research is human action recognition, where the clips are manually trimmed from the long videos, and a single cl... 详细信息
来源: 评论
Few-Shot Medical Image Segmentation with High-Fidelity Prototypes
arXiv
收藏 引用
arXiv 2024年
作者: Tang, Song Yan, Shaxu Qi, Xiaozhi Gao, Jianxin Ye, Mao Zhang, Jianwei Zhu, Xiatian IMI Group School of Health Sciences and Engineering University of Shanghai for Science and Technology Shanghai China TAMS Group Department of Informatics Universität Hamburg Hamburg Germany School of Computer Science and Engineering University of Electronic Science and Technology of China Chengdu China Surrey Institute for People-Centred Artificial Intelligence Centre for Vision Speech and Signal Processing University of Surrey Guildford United Kingdom Shenzhen Key Laboratory of Minimally Invasive Surgical Robotics and System Shenzhen Institute of Advanced Technology Chinese Academy of Sciences China
Few-shot Semantic Segmentation (FSS) aims to adapt a pretrained model to new classes with as few as a single labelled training sample per class. Despite the prototype based approaches have achieved substantial success... 详细信息
来源: 评论
SABER: Data-driven motion planner for autonomously navigating heterogeneous robots
arXiv
收藏 引用
arXiv 2021年
作者: Schperberg, Alexander Tsuei, Stephanie Soatto, Stefano Hong, Dennis The Robotics and Mechanisms Laboratory Department of Mechanical and Aerospace Engineering University of California Los AngelesCA90095 United States The UCLA Vision Lab Department of Computer Science University of California Los AngelesCA90095 United States
We present an end-to-end online motion planning framework that uses a data-driven approach to navigate a heterogeneous robot team towards a global goal while avoiding obstacles in uncertain environments. First, we use... 详细信息
来源: 评论
Shape-Aware Meta-learning for Generalizing Prostate MRI Segmentation to Unseen Domains  23rd
Shape-Aware Meta-learning for Generalizing Prostate MRI Segm...
收藏 引用
23rd International Conference on Medical Image Computing and computer-Assisted Intervention, MICCAI 2020
作者: Liu, Quande Dou, Qi Heng, Pheng-Ann Department of Computer Science and Engineering The Chinese University of Hong Kong Shatin Hong Kong T Stone Robotics Institute The Chinese University of Hong Kong Shatin Hong Kong Guangdong Provincial Key Laboratory of Computer Vision and Virtual Reality Technology Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China
Model generalization capacity at domain shift (e.g., various imaging protocols and scanners) is crucial for deep learning methods in real-world clinical deployment. This paper tackles the challenging problem of domain... 详细信息
来源: 评论
Group-wise inhibition based feature regularization for robust classification
arXiv
收藏 引用
arXiv 2021年
作者: Liu, Haozhe Wu, Haoqian Xie, Weicheng Liu, Feng Shen, Linlin 1Computer Vision Institute College of Computer Science and Software Engineering 2SZU Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society 3National Engineering Laboratory for Big Data System Computing Technology 4Guangdong Key Laboratory of Intelligent Information Processing Shenzhen University Shenzhen 518060 China
The convolutional neural network (CNN) is vulnerable to degraded images with even very small variations (e.g. corrupted and adversarial samples). One of the possible reasons is that CNN pays more attention to the most... 详细信息
来源: 评论
vision-Based Goal-Conditioned policies for underwater navigation in the presence of obstacles
arXiv
收藏 引用
arXiv 2020年
作者: Manderson, Travis Gamboa, Juan Camilo Wapnick, Stefan Tremblay, Jean-François Shkurti, Florian Meger, Dave Dudek, Gregory Mobile Robotics Laboratory School of Computer Science McGill University Montreal Canada Robot Vision & Learning Lab Department of Computer Science University of Toronto Canada
We present Nav2Goal, a data-efficient and end-to-end learning method for goal-conditioned visual navigation. Our technique is used to train a navigation policy that enables a robot to navigate close to sparse geograph... 详细信息
来源: 评论
Adaptive Partitioning for Coordinated Multi-agent Perimeter Defense
Adaptive Partitioning for Coordinated Multi-agent Perimeter ...
收藏 引用
2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
作者: Douglas G. Macharet Austin K. Chen Daigo Shishika George J. Pappas Vijay Kumar GRASP Lab University of Pennsylvania Philadelphia USA Computer Vision and Robotics Laboratory (VeRLab) Universidade Federal de Minas Gerais Brazil
Multi-Robot Systems have been recently employed in different applications and have advantages over single-robot systems, such as increased robustness and task performance efficiency. We consider such assemblies specif... 详细信息
来源: 评论
WaveCNet: Wavelet integrated CNNs to suppress aliasing effect for noise-robust image classification
arXiv
收藏 引用
arXiv 2021年
作者: Li, Qiufu Shen, Linlin Guo, Sheng Lai, Zhihui Computer Vision Institute College of Computer Science and Software Engineering Shenzhen University Shenzhen518060 China Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen518060 China Guangdong Key Laboratory of Intelligent Information Processing Shenzhen University Shenzhen518060 China MyBank Ant Group Hangzhou310012 China
Though widely used in image classification, convolutional neural networks (CNNs) are prone to noise interruptions, i.e. the CNN output can be drastically changed by small image noise. To improve the noise robustness, ... 详细信息
来源: 评论
Fair Evaluation of Federated Learning Algorithms for Automated Breast Density Classification: The Results of the 2022 ACR-NCI-NVIDIA Federated Learning Challenge
arXiv
收藏 引用
arXiv 2024年
作者: Schmidt, Kendall Bearce, Benjamin Chang, Ken Coombs, Laura Farahani, Keyvan Elbatel, Marawan Mouheb, Kaouther Marti, Robert Zhang, Ruipeng Zhang, Yao Wang, Yanfeng Hu, Yaojun Ying, Haochao Xu, Yuyang Testagrose, Conrad Demirer, Mutlu Gupta, Vikash Akünal, Ünal Bujotzek, Markus Maier-Hein, Klaus H. Qin, Yi Li, Xiaomeng Kalpathy-Cramer, Jayashree Roth, Holger R. American College of Radiology United States The Massachusetts General Hospital United States University of Colorado United States National Institutes of Health National Cancer Institute United States Computer Vision and Robotics Institute University of Girona Spain Cooperative Medianet Innovation Center Shanghai Jiao Tong University China Shanghai AI Laboratory China Real Doctor AI Research Centre Zhejiang University China School of Public Health Zhejiang University China College of Computer Science and Technology Zhejiang University China University of North Florida College of Computing Jacksonville United States Mayo Clinic Florida Radiology United States Division of Medical Image Computing German Cancer Research Center Heidelberg Germany Electronic and Computer Engineering Hong Kong University of Science and Technology China NVIDIA United States
The correct interpretation of breast density is important in the assessment of breast cancer risk. AI has been shown capable of accurately predicting breast density, however, due to the differences in imaging characte... 详细信息
来源: 评论