咨询与建议

限定检索结果

文献类型

  • 441 篇 会议
  • 208 篇 期刊文献

馆藏范围

  • 649 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 322 篇 工学
    • 211 篇 计算机科学与技术...
    • 186 篇 软件工程
    • 101 篇 控制科学与工程
    • 76 篇 光学工程
    • 66 篇 信息与通信工程
    • 52 篇 生物工程
    • 43 篇 机械工程
    • 31 篇 生物医学工程(可授...
    • 30 篇 电气工程
    • 30 篇 电子科学与技术(可...
    • 25 篇 交通运输工程
    • 22 篇 仪器科学与技术
    • 17 篇 土木工程
    • 13 篇 安全科学与工程
    • 12 篇 动力工程及工程热...
    • 12 篇 建筑学
    • 11 篇 化学工程与技术
    • 8 篇 力学(可授工学、理...
  • 167 篇 理学
    • 74 篇 物理学
    • 63 篇 数学
    • 53 篇 生物学
    • 27 篇 统计学(可授理学、...
    • 12 篇 化学
    • 9 篇 系统科学
  • 61 篇 管理学
    • 39 篇 管理科学与工程(可...
    • 28 篇 图书情报与档案管...
    • 16 篇 工商管理
  • 25 篇 医学
    • 23 篇 临床医学
    • 19 篇 基础医学(可授医学...
    • 14 篇 药学(可授医学、理...
  • 8 篇 农学
  • 6 篇 法学
  • 4 篇 经济学
  • 4 篇 教育学
  • 1 篇 哲学
  • 1 篇 文学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 125 篇 computer vision
  • 105 篇 robot vision sys...
  • 80 篇 cameras
  • 68 篇 laboratories
  • 56 篇 intelligent robo...
  • 50 篇 robot sensing sy...
  • 42 篇 layout
  • 41 篇 robustness
  • 36 篇 humans
  • 28 篇 object detection
  • 26 篇 mobile robots
  • 25 篇 robotics and aut...
  • 24 篇 feature extracti...
  • 24 篇 robot kinematics
  • 23 篇 navigation
  • 22 篇 vehicle detectio...
  • 22 篇 shape
  • 21 篇 vehicles
  • 20 篇 computer science
  • 20 篇 machine vision

机构

  • 28 篇 computer vision ...
  • 22 篇 university of ch...
  • 21 篇 shenzhen institu...
  • 20 篇 artificial intel...
  • 17 篇 institutes for r...
  • 16 篇 computer vision ...
  • 16 篇 national enginee...
  • 16 篇 shenzhen key lab...
  • 15 篇 computer vision ...
  • 15 篇 embedded vision ...
  • 13 篇 guangdong key la...
  • 12 篇 computer vision ...
  • 12 篇 shenyang institu...
  • 10 篇 computer vision ...
  • 9 篇 department of el...
  • 7 篇 key laboratory o...
  • 7 篇 embedded vision ...
  • 7 篇 computer vision ...
  • 6 篇 computer vision ...
  • 6 篇 computer vision ...

作者

  • 56 篇 m.m. trivedi
  • 32 篇 shen linlin
  • 30 篇 kryjak tomasz
  • 23 篇 n.p. papanikolop...
  • 20 篇 mohan m. trivedi
  • 19 篇 in so kweon
  • 17 篇 trivedi mohan m.
  • 17 篇 douglas g. macha...
  • 16 篇 zhang hong
  • 13 篇 c.e. smith
  • 12 篇 xie weicheng
  • 11 篇 linlin shen
  • 10 篇 j.c. mccall
  • 10 篇 hong zhang
  • 9 篇 kweon in so
  • 8 篇 tang chao
  • 8 篇 m. trivedi
  • 8 篇 lyons damian m.
  • 8 篇 song siyang
  • 8 篇 szolc hubert

语言

  • 627 篇 英文
  • 21 篇 其他
  • 1 篇 中文
检索条件"机构=Computer Vision and Robotics Laboratory Computer Vision and Robotics Laboratory"
649 条 记 录,以下是281-290 订阅
排序:
A real-time supervised learning approach for sky segmentation onboard unmanned aerial vehicles
A real-time supervised learning approach for sky segmentatio...
收藏 引用
International Conference on Unmanned Aircraft Systems (ICUAS)
作者: Adrian Carrio Carlos Sampedro Changhong Fu Jean-François Collumeau Pascual Campoy Computer Vision Group Center for Automation and Robotics (UPM-CSIC) Madrid Spain School of Mechanical and Aerospace Engineering and ST Engineering-NTU Corp Laboratory Nanyang Technological University Singapore
vision-based sky segmentation and horizon line detection can be extremely useful to perform important tasks onboard Unmanned Aerial Vehicles (UAVs), such as pose estimation and collision avoidance. Most of the existin... 详细信息
来源: 评论
Adaptive path planning for multiple vehicles with bounded curvature  1
收藏 引用
11th Latin-American robotics Symposium on robotics, LARS 2014
作者: Macharet, Douglas G. Campos, Mario F.M. Computer Vision and Robotics Laboratory Computer Science Department Universidade Federal de Minas Gerais Belo Horizonte MG Brazil
In this paper we introduce the k-Dynamic Dubins TSP with Neighborhoods (k-DDTSPN), the problem consisting of planning efficient paths among a set of target regions dynamically selected in the environment for multiple ... 详细信息
来源: 评论
Real-time monocular obstacle avoidance using Underwater Dark Channel Prior
Real-time monocular obstacle avoidance using Underwater Dark...
收藏 引用
IEEE/RSJ International Conference on Intelligent Robots and Systems
作者: Paulo Drews Emili Hernandez Alberto Elfes Erickson R. Nascimento Mario Campos Autonomous Systems Laboratory Data61-CSIRO Brisbane Australia Computer Vision and Robotics Laboratory of the Dep. de Ciencia da Computacao Univ. Federal de Minas Gerais - UFMG Belo Horizonte Brazil
In this paper we propose a new vision-based obstacle avoidance strategy using the Underwater Dark Channel Prior (UDCP) that can be applied to any Unmanned Underwater Vehicle (UUV) equipped with a simple monocular came... 详细信息
来源: 评论
Robust face recognition using key-point descriptors  10
Robust face recognition using key-point descriptors
收藏 引用
10th International Conference on computer vision Theory and Applications, VISAPP 2015
作者: Klemm, Soeren Andreu, Yasmina Henriquez, Pedro Matuszewski, Bogdan J. Robotics and Computer Vision Research Laboratory School of Computing Engineering and Physical Sciences University of Central Lancashire Preston United Kingdom
Key-point based techniques have demonstrated a good performance for recognition of various objects in numerous computer vision applications. This paper investigates the use of some of the most popular key-point descri... 详细信息
来源: 评论
LINE MEETS AS-PROJECTIVE-AS-POSSIBLE IMAGE STITCHING WITH MOVING DLT
LINE MEETS AS-PROJECTIVE-AS-POSSIBLE IMAGE STITCHING WITH MO...
收藏 引用
IEEE International Conference on Image Processing
作者: Kyungdon Joo Namil Kim Tae-Hyun Oh In So Kweon Robotics and Computer Vision Laboratory KAIST
We propose a spatially varying stitching method with line correspondences. We are motivated by the observation that point features could be spatially biased or not matched in practice, e.g., repeated textures or homog... 详细信息
来源: 评论
Nonlinear Model Predictive Formation Control for Quadcopters
收藏 引用
IFAC-PapersOnLine 2015年 第19期48卷 39-44页
作者: Ribeiro, Tiago T. Conceição, André G.S. Sa, Inkyu Corke, Peter LaR - Robotics Laboratory Department of Electrical Engineering Federal University of Bahia Salvador Brazil Australian Centre for Robotic Vision School of Electrical Engineering and Computer Science Queensland University of Technology Australia
This paper presents a Nonlinear Model Predictive Formation Control for a group of Quadcopters. In this approach the controllers are distributed to the quadcopters and the coupling is done through its objective functio... 详细信息
来源: 评论
Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge
arXiv
收藏 引用
arXiv 2018年
作者: Bakas, Spyridon Reyes, Mauricio Jakab, Andras Bauer, Stefan Rempfler, Markus Crimi, Alessandro Shinohara, Russell Takeshi Berger, Christoph Ha, Sung Min Rozycki, Martin Prastawa, Marcel Alberts, Esther Lipkova, Jana Freymann, John Kirby, Justin Bilello, Michel Fathallah-Shaykh, Hassan M. Wiest, Roland Kirschke, Jan Wiestler, Benedikt Colen, Rivka Kotrotsou, Aikaterini Lamontagne, Pamela Marcus, Daniel Milchenko, Mikhail Nazeri, Arash Weber, Marc-Andr Mahajan, Abhishek Baid, Ujjwal Gerstner, Elizabeth Kwon, Dongjin Acharya, Gagan Agarwal, Manu Alam, Mahbubul Albiol, Alberto Albiol, Antonio Albiol, Francisco J. Alex, Varghese Allinson, Nigel Amorim, Pedro H.A. Amrutkar, Abhijit Anand, Ganesh Andermatt, Simon Arbel, Tal Arbelaez, Pablo Avery, Aaron Azmat, Muneeza Pranjal, B. Bai, Wenjia Banerjee, Subhashis Barth, Bill Batchelder, Thomas Batmanghelich, Kayhan Battistella, Enzo Beers, Andrew Belyaev, Mikhail Bendszus, Martin Benson, Eze Bernal, Jose Bharath, Halandur Nagaraja Biros, George Bisdas, Sotirios Brown, James Cabezas, Mariano Cao, Shilei Cardoso, Jorge M. Carver, Eric N. Casamitjana, Adri Castillo, Laura Silvana Cat, Marcel Cattin, Philippe Cérigues, Albert Chagas, Vinicius S. Chandra, Siddhartha Chang, Yi-Ju Chang, Shiyu Chang, Ken Chazalon, Joseph Chen, Shengcong Chen, Wei Chen, Jefferson W. Chen, Zhaolin Cheng, Kun Choudhury, Ahana Roy Chylla, Roger Clrigues, Albert Colleman, Steven Colmeiro, Ramiro German Rodriguez Combalia, Marc Costa, Anthony Cui, Xiaomeng Dai, Zhenzhen Dai, Lutao Daza, Laura Alexandra Deutsch, Eric Ding, Changxing Dong, Chao Dong, Shidu Dudzik, Wojciech Eaton-Rosen, Zach Egan, Gary Escudero, Guilherme Estienne, Tho Everson, Richard Fabrizio, Jonathan Fan, Yong Fang, Longwei Feng, Xue Ferrante, Enzo Fidon, Lucas Fischer, Martin French, Andrew P. Fridman, Naomi Fu, Huan Fuentes, David Gao, Yaozong Gates, Evan Gering, David Gholami, Amir Gierke, Willi Glocker, Ben Gong, Mingming Gonzlez-Vill, Sandra Grosges, T. Guan, Yuanfang Guo, Sheng Gupta, Sudeep Han, Woo-Sup Han, Il Song Harmuth, Ko Center for Biomedical Image Computing and Analytics University of Pennsylvania PhiladelphiaPA United States Department of Radiology Perelman School of Medicine University of Pennsylvania PhiladelphiaPA United States Department of Pathology and Laboratory Medicine Perelman School of Medicine University of Pennsylvania PhiladelphiaPA United States Institute for Surgical Technology and Biomechanics University of Bern Bern Switzerland Center for MR-Research University Children's Hospital Zurich Zurich Switzerland Support Centre for Advanced Neuroimaging Inselspital Institute for Diagnostic and Interventional Neuroradiology Bern University Hospital Bern Switzerland University Hospital of Zurich Zurich Switzerland Center for Clinical Epidemiology and Biostatistics University of Pennsylvania Philadelphia United States Image-Based Biomedical Modeling Group Technical University of Munich Munich Germany Icahn School of Medicine Mount Sinai Health System New YorkNY United States Leidos Biomedical Research Inc. Frederick National Laboratory for Cancer Research FrederickMD21701 United States Cancer Imaging Program National Cancer Institute National Institutes of Health BethesdaMD20814 United States Department of Neurology University of Alabama at Birmingham BirminghamAL United States Department of Diagnostic Radiology University of Texas MD Anderson Cancer Center HoustonTX United States Department of Psychology Washington University St. LouisMO United States Neuroimaging Informatics and Analysis Center Washington University St. LouisMO United States Department of Radiology Washington University St. LouisMO United States Institute of Diagnostic and Interventional Radiology Pediatric Radiology and Neuroradiology University Medical Center Rostock Ernst-Heydemann-Str. 6 Rostock18057 Germany Tata Memorial Centre Homi Bhabha National Institute Mumbai India Shri Guru Gobind Singhji Institute of Engineering and Technology Nanded India NVIDIA Santa Clara
Gliomas are the most common primary brain malignancies, with different degrees of aggressiveness, variable prognosis and various heterogeneous histologic sub-regions, i.e., peritumoral edematous/invaded tissue, necrot... 详细信息
来源: 评论
Adapting an hybrid behavior-based architecture with episodic memory to different humanoid robots
Adapting an hybrid behavior-based architecture with episodic...
收藏 引用
IEEE International Workshop on Robot and Human Communication (ROMAN)
作者: François Ferland Arturo Cruz-Maya Adriana Tapus Robotics and Computer Vision Laboratory ENSTA - Paris Tech Palaiseau France
A common goal of robot control architecture designers is to create systems that are sufficiently generic to be adapted to different robot hardware. Beyond code re-use from a software engineering standpoint, having a c... 详细信息
来源: 评论
Nonlinear Model Predictive Formation Control for Quadcopters
Nonlinear Model Predictive Formation Control for Quadcopters
收藏 引用
作者: Ribeiro, Tiago T. Conceição, André G.S. Sa, Inkyu Corke, Peter LaR - Robotics Laboratory Department of Electrical Engineering Federal University of Bahia Salvador Brazil Australian Centre for Robotic Vision School of Electrical Engineering and Computer Science Queensland University of Technology Australia
This paper presents a Nonlinear Model Predictive Formation Control for a group of Quadcopters. In this approach the controllers are distributed to the quadcopters and the coupling is done through its objective functio... 详细信息
来源: 评论
vision System and Depth Processing for DRC-HUBO+
Vision System and Depth Processing for DRC-HUBO+
收藏 引用
IEEE International Conference on robotics and Automation
作者: Inwook Shim Seunghak Shin Yunsu Bok Kyungdon Joo Dong-Geol Choi Joon-Young Lee Jaesik Park Jun-Ho Oh In So Kweon Robotics and Computer Vision Laboratory Dep. of EE KAIST Daejeon 305-701 Korea Adobe Research San Jose CA 95110 United States Intel Labs Santa Clara CA 95054 United States Humanoid Research Center Dep. of ME KAIST Daejeon 305-701 Korea
This paper presents a vision system and a depth processing algorithm for DRC-HUBO+, the winner of the DRC finals 2015. Our system is designed to reliably capture 3D information of a scene and objects and to be robust ... 详细信息
来源: 评论