咨询与建议

限定检索结果

文献类型

  • 262 篇 会议
  • 115 篇 期刊文献

馆藏范围

  • 377 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 181 篇 工学
    • 105 篇 计算机科学与技术...
    • 86 篇 软件工程
    • 41 篇 光学工程
    • 33 篇 控制科学与工程
    • 30 篇 机械工程
    • 29 篇 电气工程
    • 23 篇 信息与通信工程
    • 21 篇 生物医学工程(可授...
    • 21 篇 生物工程
    • 15 篇 仪器科学与技术
    • 13 篇 电子科学与技术(可...
    • 12 篇 交通运输工程
    • 12 篇 安全科学与工程
    • 8 篇 土木工程
    • 5 篇 船舶与海洋工程
    • 4 篇 化学工程与技术
  • 93 篇 理学
    • 43 篇 物理学
    • 40 篇 数学
    • 23 篇 生物学
    • 20 篇 统计学(可授理学、...
    • 8 篇 系统科学
    • 5 篇 化学
    • 4 篇 海洋科学
  • 28 篇 管理学
    • 19 篇 管理科学与工程(可...
    • 11 篇 图书情报与档案管...
    • 10 篇 工商管理
  • 18 篇 医学
    • 16 篇 临床医学
    • 12 篇 基础医学(可授医学...
    • 8 篇 药学(可授医学、理...
  • 6 篇 法学
    • 6 篇 社会学
  • 3 篇 教育学
  • 2 篇 艺术学
  • 1 篇 哲学
  • 1 篇 经济学
  • 1 篇 文学
  • 1 篇 农学

主题

  • 87 篇 computer vision
  • 59 篇 cameras
  • 57 篇 robot vision sys...
  • 35 篇 laboratories
  • 28 篇 layout
  • 26 篇 humans
  • 24 篇 robot sensing sy...
  • 22 篇 intelligent robo...
  • 22 篇 robustness
  • 21 篇 feature extracti...
  • 17 篇 vehicle detectio...
  • 16 篇 object detection
  • 16 篇 image segmentati...
  • 16 篇 intelligent vehi...
  • 16 篇 vehicles
  • 15 篇 computational mo...
  • 15 篇 vehicle driving
  • 15 篇 detectors
  • 15 篇 image analysis
  • 14 篇 robot kinematics

机构

  • 28 篇 computer vision ...
  • 16 篇 computer vision ...
  • 13 篇 computer vision ...
  • 10 篇 computer vision ...
  • 7 篇 siat branch shen...
  • 7 篇 computer vision ...
  • 6 篇 research institu...
  • 6 篇 computer vision ...
  • 5 篇 computer vision ...
  • 5 篇 department of qu...
  • 5 篇 ihu strasbourg s...
  • 5 篇 computer vision ...
  • 5 篇 shenzhen key lab...
  • 5 篇 heidelberg
  • 4 篇 sensetime resear...
  • 4 篇 centre for medic...
  • 4 篇 microsoft resear...
  • 4 篇 computer vision ...
  • 4 篇 computer vision ...
  • 4 篇 computer vision ...

作者

  • 59 篇 m.m. trivedi
  • 23 篇 trivedi mohan m.
  • 23 篇 mohan m. trivedi
  • 10 篇 j.c. mccall
  • 10 篇 trivedi mm
  • 10 篇 mohan trivedi
  • 9 篇 m. trivedi
  • 8 篇 trivedi mohan
  • 7 篇 eshed ohn-bar
  • 7 篇 pere ridao
  • 7 篇 in so kweon
  • 6 篇 valverde sergi
  • 6 篇 narcís palomeras
  • 6 篇 marc carreras
  • 6 篇 cabezas mariano
  • 6 篇 garcia rafael
  • 6 篇 panos trahanias
  • 6 篇 s.b. marapane
  • 6 篇 t. gandhi
  • 6 篇 brendan morris

语言

  • 344 篇 英文
  • 32 篇 其他
  • 1 篇 中文
检索条件"机构=Computer Vision and Robotics Research"
377 条 记 录,以下是121-130 订阅
排序:
Comprehensive parameter sweep for learning-based detector on traffic lights  12th
Comprehensive parameter sweep for learning-based detector on...
收藏 引用
12th International Symposium on Visual Computing, ISVC 2016
作者: Jensen, Morten B. Philipsen, Mark P. Moeslund, Thomas B. Trivedi, Mohan Visual Analysis of People Laboratory Aalborg University Aalborg Denmark Computer Vision and Robotics Research Laboratory UC San Diego La Jolla United States
Determining the optimal parameters for a given detection algorithm is not straightforward and what ends up as the final values is mostly based on experience and heuristics. In this paper we investigate the influence o... 详细信息
来源: 评论
Stereo Matching with Color and Monochrome Cameras in Low-light Conditions
Stereo Matching with Color and Monochrome Cameras in Low-lig...
收藏 引用
IEEE Conference on computer vision and Pattern Recognition
作者: Hae-Gon Jeon Joon-Young Lee Sunghoon Im Hyowon Ha In So Kweon Robotics and Computer Vision Lab. KAIST Adobe Research
Consumer devices with stereo cameras have become popular because of their low-cost depth sensing capability. However, those systems usually suffer from low imaging quality and inaccurate depth acquisition under low-li... 详细信息
来源: 评论
Detection and localization with multi-scale models
Detection and localization with multi-scale models
收藏 引用
International Conference on Pattern Recognition
作者: Eshed Ohn-Bar Mohan M. Trivedi Computer Vision and Robotics Research Laboratory University of California San Diego
Object detection and localization in images involve a multi-scale reasoning process. First, responses of object detectors are known to vary with image scale. Second, contextual relationships on a part-level, object-le... 详细信息
来源: 评论
What makes an on-road object important?
What makes an on-road object important?
收藏 引用
International Conference on Pattern Recognition
作者: Eshed Ohn-Bar Mohan M. Trivedi Computer Vision and Robotics Research Laboratory University of California San Diego
Human drivers continuously attend to important scene elements in order to safely and smoothly navigate in intricate environments and under uncertainty. This paper develops a human-centric framework for object recognit... 详细信息
来源: 评论
Improving automated multiple sclerosis lesion segmentation with a cascaded 3D convolutional neural network approach
arXiv
收藏 引用
arXiv 2017年
作者: Valverde, Sergi Cabezas, Mariano Roura, Eloy González-Villà, Sandra Pareto, Deborah Vilanova, Joan C. Ramió-Torrentà, Lluís Rovira, Àlex Oliver, Arnau Lladó, Xavier Research institute of Computer Vision and Robotics University of Girona Spain Magnetic Resonance Unit Dept of Radiology Vall d’Hebron University Hospital Spain Girona Magnetic Resonance Center Spain Multiple Sclerosis and Neuroimmunology Unit Dr. Josep Trueta University Hospital Spain
In this paper, we present a novel automated method for White Matter (WM) lesion segmentation of Multiple Sclerosis (MS) patient images. Our approach is based on a cascade of two 3D patch-wise convolutional neural netw... 详细信息
来源: 评论
Standardized Assessment of Automatic Segmentation of White Matter Hyperintensities and Results of the WMH Segmentation Challenge
arXiv
收藏 引用
arXiv 2019年
作者: Kuijf, Hugo J. Biesbroek, J. Matthijs Bresser, Jeroen de Heinen, Rutger Andermatt, Simon Bento, Mariana Berseth, Matt Belyaev, Mikhail Cardoso, M. Jorge Casamitjana, Adrià Collins, D. Louis Dadar, Mahsa Georgiou, Achilleas Ghafoorian, Mohsen Jin, Dakai Khademi, April Knight, Jesse Li, Hongwei Lladó, Xavier Luna, Miguel Mahmood, Qaiser McKinley, Richard Mehrtash, Alireza Ourselin, Sébastien Park, Bo-yong Park, Hyunjin Park, Sang Hyun Pezold, Simon Puybareau, Elodie Rittner, Leticia Sudre, Carole H. Valverde, Sergi Vilaplana, Verónica Wiest, Roland Xu, Yongchao Xu, Ziyue Zeng, Guodong Zhang, Jianguo Zheng, Guoyan Chen, Christopher Flier, Wiesje van der Barkhof, Frederik Viergever, Max A. Biessels, Geert Jan Image Sciences Institute UMC Utrecht Utrecht University Netherlands Brain Center Rudolf Magnus UMC Utrecht Utrecht University Netherlands Department of Radiology UMC Utrecht Department of Radiology LUMC Leiden Netherlands Department of Biomedical Engineering University of Basel Allschwil Switzerland Radiology and Clinical Neuroscience Hotchkiss Brain Institute University of Calgary AB Canada NLP Logix Skolkovo Institute of Science and Technology School of Biomedical Engineering and Imaging Sciences King’s College London Centre for Medical Image Computing University College London Signal Theory and Communications Department Universitat Politècnica de Catalunya BarcelonaTech Barcelona Spain McGill University Canada Computational Statistics and Machine Learning MSc University College London TomTom Amsterdam Netherlands Department of Radiology and Imaging Science National Institutes of Health United States Ryerson University Canada University of Guelph Canada Sun Yat-sen University University of Dundee Technical University of Munich Research institute of Computer Vision and Robotics University of Girona Spain Department of Robotics Engineering Daegu Gyeongbuk Institute of Science and Technology Daegu Korea Republic of Pakistan Institute of Nuclear Science and Technology Support Center for Advanced Neuroimaging Institute for Diagnostic and Interventional Neuroradiology Inselspital University of Bern Switzerland Electrical and Computer Engineering Department University of British Columbia Vancouver Department of Radiology Brigham and Women’s Hospital Harvard Medical School Boston School of Biomedical Engineering and Imaging Sciences King’s College London Suwon Korea Republic of School of Electronic and Electrical Engineering Sungkyunkwan University Suwon Korea Republic of France School of Electrical and Computer Engineering University of Campinas SP Brazil School of Biomedical Engineering and Imaging Sciences King’s College London Centre for Medical I
Quantification of cerebral white matter hyperintensities (WMH) of presumed vascular origin is of key importance in many neurological research studies. Currently, measurements are often still obtained from manual segme... 详细信息
来源: 评论
Hidden Hands: Tracking Hands with an Occlusion Aware Tracker
Hidden Hands: Tracking Hands with an Occlusion Aware Tracker
收藏 引用
IEEE Conference on computer vision and Pattern Recognition Workshops
作者: Akshay Rangesh Eshed Ohn-Bar Mohan M. Trivedi Computer Vision and Robotics Research Lab University of California San Diego La Jolla CA
This work presents an occlusion aware hand tracker to reliably track both hands of a person using a monocular RGB camera. To demonstrate its robustness, we evaluate the tracker on a challenging, occlusion-ridden natur... 详细信息
来源: 评论
Planning feasible and safe paths online for autonomous underwater vehicles in unknown environments
Planning feasible and safe paths online for autonomous under...
收藏 引用
IEEE/RSJ International Conference on Intelligent Robots and Systems
作者: Juan David Hernandez Mark Moll Eduard Vidal Marc Carreras Lydia E. Kavraki Underwater Vision and Robotics Research Center (CIRS) University of Girona Spain Department of Computer Science at Rice University Houston TX USA
We present a framework for planning collision-free and safe paths online for autonomous underwater vehicles (AUVs) in unknown environments. We build up on our previous work and propose an improved approach. While pres... 详细信息
来源: 评论
Object proposal using 3D point cloud for DRC-HUBO+
Object proposal using 3D point cloud for DRC-HUBO+
收藏 引用
2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
作者: Seunghak Shin Inwook Shim Jiyung Jung Yunsu Bok Jun-Ho Oh In So Kweon Dep. of EE Robotics and Computer Vision Labortory Daejeon Korea Naver Labs Seongnam Korea Dep. of ME Humanoid Research Center Daejeon Korea
We present an object proposal method which utilizes the 3D data obtained from a depth sensor as well as the color information of images. Our object proposal method is designed to improve the performance of the object ... 详细信息
来源: 评论
Robust face recognition using key-point descriptors  10
Robust face recognition using key-point descriptors
收藏 引用
10th International Conference on computer vision Theory and Applications, VISAPP 2015
作者: Klemm, Soeren Andreu, Yasmina Henriquez, Pedro Matuszewski, Bogdan J. Robotics and Computer Vision Research Laboratory School of Computing Engineering and Physical Sciences University of Central Lancashire Preston United Kingdom
Key-point based techniques have demonstrated a good performance for recognition of various objects in numerous computer vision applications. This paper investigates the use of some of the most popular key-point descri... 详细信息
来源: 评论