咨询与建议

限定检索结果

文献类型

  • 262 篇 会议
  • 116 篇 期刊文献

馆藏范围

  • 378 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 182 篇 工学
    • 106 篇 计算机科学与技术...
    • 86 篇 软件工程
    • 41 篇 光学工程
    • 33 篇 控制科学与工程
    • 30 篇 机械工程
    • 30 篇 电气工程
    • 23 篇 信息与通信工程
    • 21 篇 生物医学工程(可授...
    • 21 篇 生物工程
    • 15 篇 仪器科学与技术
    • 13 篇 电子科学与技术(可...
    • 12 篇 交通运输工程
    • 12 篇 安全科学与工程
    • 8 篇 土木工程
    • 5 篇 船舶与海洋工程
    • 4 篇 化学工程与技术
  • 93 篇 理学
    • 43 篇 物理学
    • 40 篇 数学
    • 23 篇 生物学
    • 20 篇 统计学(可授理学、...
    • 8 篇 系统科学
    • 5 篇 化学
    • 4 篇 海洋科学
  • 28 篇 管理学
    • 19 篇 管理科学与工程(可...
    • 11 篇 图书情报与档案管...
    • 10 篇 工商管理
  • 18 篇 医学
    • 16 篇 临床医学
    • 12 篇 基础医学(可授医学...
    • 8 篇 药学(可授医学、理...
  • 6 篇 法学
    • 6 篇 社会学
  • 3 篇 教育学
  • 2 篇 艺术学
  • 1 篇 哲学
  • 1 篇 经济学
  • 1 篇 文学
  • 1 篇 农学

主题

  • 87 篇 computer vision
  • 59 篇 cameras
  • 57 篇 robot vision sys...
  • 35 篇 laboratories
  • 28 篇 layout
  • 26 篇 humans
  • 24 篇 robot sensing sy...
  • 22 篇 intelligent robo...
  • 22 篇 robustness
  • 21 篇 feature extracti...
  • 17 篇 vehicle detectio...
  • 16 篇 object detection
  • 16 篇 image segmentati...
  • 16 篇 intelligent vehi...
  • 16 篇 vehicles
  • 15 篇 computational mo...
  • 15 篇 vehicle driving
  • 15 篇 detectors
  • 15 篇 image analysis
  • 14 篇 robot kinematics

机构

  • 28 篇 computer vision ...
  • 16 篇 computer vision ...
  • 13 篇 computer vision ...
  • 10 篇 computer vision ...
  • 7 篇 siat branch shen...
  • 7 篇 computer vision ...
  • 6 篇 research institu...
  • 6 篇 computer vision ...
  • 5 篇 computer vision ...
  • 5 篇 department of qu...
  • 5 篇 ihu strasbourg s...
  • 5 篇 computer vision ...
  • 5 篇 shenzhen key lab...
  • 5 篇 heidelberg
  • 4 篇 sensetime resear...
  • 4 篇 centre for medic...
  • 4 篇 microsoft resear...
  • 4 篇 computer vision ...
  • 4 篇 computer vision ...
  • 4 篇 computer vision ...

作者

  • 59 篇 m.m. trivedi
  • 23 篇 trivedi mohan m.
  • 23 篇 mohan m. trivedi
  • 10 篇 j.c. mccall
  • 10 篇 trivedi mm
  • 10 篇 mohan trivedi
  • 9 篇 m. trivedi
  • 8 篇 trivedi mohan
  • 7 篇 eshed ohn-bar
  • 7 篇 pere ridao
  • 7 篇 in so kweon
  • 6 篇 valverde sergi
  • 6 篇 narcís palomeras
  • 6 篇 marc carreras
  • 6 篇 cabezas mariano
  • 6 篇 garcia rafael
  • 6 篇 panos trahanias
  • 6 篇 s.b. marapane
  • 6 篇 t. gandhi
  • 6 篇 brendan morris

语言

  • 345 篇 英文
  • 32 篇 其他
  • 1 篇 中文
检索条件"机构=Computer Vision and Robotics Research"
378 条 记 录,以下是41-50 订阅
排序:
CSSL-MHTR: Continual Self-Supervised Learning for Scalable Multi-script Handwritten Text Recognition
arXiv
收藏 引用
arXiv 2023年
作者: Dhiaf, Marwa Souibgui, Mohamed Ali Wang, Kai Liu, Yuyang Kessentini, Yousri Fornés, Alicia Rouhou, Ahmed Cheikh InstaDeep United Kingdom Computer Vision Center UAB Spain Digital Research Center of Sfax SM@RTS Tunisia State Key Laboratory of Robotics China Shenyang Institute of Automation Chinese Academy of Sciences China
Self-supervised learning has recently emerged as a strong alternative in document analysis. These approaches are now capable of learning high-quality image representations and overcoming the limitations of supervised ... 详细信息
来源: 评论
Hyperspectral Imaging for Identifying Foreign Objects on Pork Belly
arXiv
收藏 引用
arXiv 2025年
作者: Ghimpeteanu, Gabriela Rajani, Hayat Quintana, Josep Garcia, Rafael Coronis Computing SL University of Girona Science and Technology Park Carrer Pic de Peguera 11 Edifici Giroemprèn Girona17003 Spain Computer Vision and Robotics Research Institute University of Girona Campus Montilivi Edifici P4 Girona17003 Spain
Ensuring food safety and quality is critical in the food processing industry, where the detection of contaminants remains a persistent challenge. This study presents an automated solution for detecting foreign objects... 详细信息
来源: 评论
Constricting Normal Latent Space for Anomaly Detection with Normal-only Training Data
arXiv
收藏 引用
arXiv 2024年
作者: Astrid, Marcella Zaheer, Muhammad Zaigham Lee, Seung-Ik Department of Artificial Intelligence University of Science and Technology Korea Republic of Field Robotics Research Section Electronics and Telecommunications Research Institute Korea Republic of Interdisciplinary Centre for Security Reliability and Trust University of Luxembourg Luxembourg Department of Computer Vision Mohamed Bin Zayed University of Artificial Intelligence United Arab Emirates
In order to devise an anomaly detection model using only normal training data, an autoencoder (AE) is typically trained to reconstruct the data. As a result, the AE can extract normal representations in its latent spa... 详细信息
来源: 评论
Towards a Unified Approach to Homography Estimation Using Image Features and Pixel Intensities
arXiv
收藏 引用
arXiv 2022年
作者: Nogueira, Lucas de Paiva, Ely C. Silveira, Geraldo School of Mechanical Engineering University of Campinas Campinas SP Brazil Robotics and Computer Vision Research Group Center for Information Technology Renato Archer Campinas SP Brazil
The homography matrix is a key component in various vision-based robotic tasks. Traditionally, homography estimation algorithms are classified into feature- or intensity-based. The main advantages of the latter are th... 详细信息
来源: 评论
FoPro-KD: Fourier Prompted Effective Knowledge Distillation for Long-Tailed Medical Image Recognition
arXiv
收藏 引用
arXiv 2023年
作者: Elbatel, Marawan Martí, Robert Li, Xiaomeng The Department of Electronic and Computer Engineering The Hong Kong University of Science and Technology Hong Kong The Computer Vision and Robotics Institute University of Girona Spain The Department of Electronic and Computer Engineering the Hong Kong University of Science and Technology Hong Kong HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute Futian Shenzhen China
Representational transfer from publicly available models is a promising technique for improving medical image classification, especially in long-tailed datasets with rare diseases. However, existing methods often over... 详细信息
来源: 评论
*** 1.0: The Full Autonomous Stack for Oval Racing at High Speeds
arXiv
收藏 引用
arXiv 2023年
作者: Raji, Ayoub Caporale, Danilo Gatti, Francesco Giove, Andrea Verucchi, Micaela Malatesta, Davide Musiu, Nicola Toschi, Alessandro Popitanu, Silviu Roberto Bagni, Fabio Bosi, Massimiliano Liniger, Alexander Bertogna, Marko Morra, Daniele Amerotti, Francesco Bartoli, Luca Martello, Federico Porta, Riccardo University of Modena and Reggio Emilia Italy University of Parma Italy Technology Innovation Institute - Autonomous Robotics Research Center United Arab Emirates HIPERT srl Italy University of Pisa Italy Computer Vision Lab ETH Zurich Switzerland
The Indy Autonomous Challenge (IAC) brought together for the first time in history nine autonomous racing teams competing at unprecedented speed and in head-to-head scenario, using independently developed software on ... 详细信息
来源: 评论
Edge-guided Representation Learning for Underwater Object Detection
arXiv
收藏 引用
arXiv 2023年
作者: Dai, Linhui Liu, Hong Song, Pinhao Tang, Hao Ding, Runwei Li, Shengquan Key Laboratory of Machine Perception Shenzhen Graduate School Peking University Shenzhen China Robotics Research Group KU Leuven Leuven Belgium Computer Vision Lab ETH Zurich Zurich Switzerland Peng Cheng Laboratory Shenzhen China
Underwater object detection (UOD) is crucial for marine economic development, environmental protection, and the planet’s sustainable development. The main challenges of this task arise from low-contrast, small object... 详细信息
来源: 评论
Deep Learning vs. Traditional 3d Registration: A Featureless 3d Registration Baseline
SSRN
收藏 引用
SSRN 2023年
作者: Bojanic, David Bartol, Kristijan Forest, Josep Petkovic, Tomislav Pribanic, Tomislav University of Zagreb Faculty of Electrical Engineering and Computing Unska 3 Zagreb10000 Croatia TU Dresden Dresden01069 Germany University of Girona Computer Vision and Robotics Research Institute Plaça de Sant Domènec 3 Girona17004 Spain
Recent 3D registration methods are mostly learning-based that either find correspondences in feature space and match them, or directly estimate the registration transformation from the given point cloud features. Ther... 详细信息
来源: 评论
Exploiting Autoencoder's Weakness to Generate Pseudo Anomalies
arXiv
收藏 引用
arXiv 2024年
作者: Astrid, Marcella Zaheer, Muhammad Zaigham Aouada, Djamila Lee, Seung-Ik Department of Artificial Intelligence University of Science and Technology Daejeon34113 Korea Republic of Field Robotics Research Section Electronics and Telecommunications Research Institute Daejeon34129 Korea Republic of Interdisciplinary Centre for Security Reliability and Trust University of Luxembourg Luxembourg1855 Luxembourg Department of Computer Vision Mohamed Bin Zayed University of Artificial Intelligence Abu Dhabi United Arab Emirates
Due to the rare occurrence of anomalous events, a typical approach to anomaly detection is to train an autoencoder (AE) with normal data only so that it learns the patterns or representations of the normal training da... 详细信息
来源: 评论
Towards Source-free Domain Adaptive Semantic Segmentation via Importance-aware and Prototype-contrast Learning
arXiv
收藏 引用
arXiv 2023年
作者: Cao, Yihong Zhang, Hui Lu, Xiao Xiao, Zheng Yang, Kailun Wang, Yaonan College of Computer Science and Electronic Engineering Hunan University Changsha410082 China National Engineering Research Center of Robot Vision Perception and Control Technology School of Robotics Hunan University Changsha410082 China College of Engineering and Design Hunan Normal University Changsha410082 China
Domain adaptive semantic segmentation enables robust pixel-wise understanding in real-world driving scenes. Source-free domain adaptation, as a more practical technique, addresses the concerns of data privacy and stor... 详细信息
来源: 评论