咨询与建议

限定检索结果

文献类型

  • 178 篇 会议
  • 55 篇 期刊文献

馆藏范围

  • 233 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 101 篇 工学
    • 63 篇 计算机科学与技术...
    • 52 篇 软件工程
    • 20 篇 光学工程
    • 18 篇 控制科学与工程
    • 16 篇 机械工程
    • 13 篇 电气工程
    • 13 篇 信息与通信工程
    • 11 篇 生物医学工程(可授...
    • 10 篇 生物工程
    • 9 篇 交通运输工程
    • 7 篇 安全科学与工程
    • 6 篇 仪器科学与技术
    • 6 篇 电子科学与技术(可...
    • 5 篇 土木工程
    • 3 篇 力学(可授工学、理...
    • 3 篇 化学工程与技术
  • 47 篇 理学
    • 24 篇 物理学
    • 23 篇 数学
    • 12 篇 统计学(可授理学、...
    • 11 篇 生物学
    • 5 篇 系统科学
    • 4 篇 化学
    • 3 篇 海洋科学
  • 17 篇 管理学
    • 13 篇 管理科学与工程(可...
    • 7 篇 工商管理
    • 7 篇 图书情报与档案管...
  • 8 篇 医学
    • 8 篇 临床医学
    • 6 篇 基础医学(可授医学...
    • 4 篇 药学(可授医学、理...
  • 2 篇 法学
    • 2 篇 社会学
  • 1 篇 哲学
  • 1 篇 教育学
  • 1 篇 文学
  • 1 篇 农学
  • 1 篇 艺术学

主题

  • 75 篇 computer vision
  • 48 篇 robot vision sys...
  • 41 篇 cameras
  • 35 篇 laboratories
  • 26 篇 layout
  • 21 篇 intelligent robo...
  • 20 篇 humans
  • 19 篇 robot sensing sy...
  • 17 篇 vehicle detectio...
  • 17 篇 robustness
  • 16 篇 intelligent vehi...
  • 15 篇 vehicle driving
  • 13 篇 feature extracti...
  • 12 篇 visualization
  • 12 篇 image analysis
  • 12 篇 vehicles
  • 11 篇 computational mo...
  • 10 篇 object detection
  • 10 篇 detectors
  • 9 篇 sensor systems

机构

  • 28 篇 computer vision ...
  • 16 篇 computer vision ...
  • 12 篇 computer vision ...
  • 10 篇 computer vision ...
  • 7 篇 computer vision ...
  • 5 篇 computer vision ...
  • 5 篇 department of qu...
  • 5 篇 ihu strasbourg s...
  • 5 篇 computer vision ...
  • 5 篇 heidelberg
  • 4 篇 centre for medic...
  • 4 篇 computer vision ...
  • 4 篇 department of me...
  • 4 篇 faculty of mathe...
  • 4 篇 department of ge...
  • 3 篇 department of co...
  • 3 篇 university of pe...
  • 3 篇 department of co...
  • 3 篇 vector institute...
  • 3 篇 erlangen-nürnber...

作者

  • 56 篇 m.m. trivedi
  • 20 篇 mohan m. trivedi
  • 17 篇 trivedi mohan m.
  • 10 篇 j.c. mccall
  • 8 篇 m. trivedi
  • 8 篇 mohan trivedi
  • 7 篇 trivedi mohan
  • 7 篇 trivedi mm
  • 6 篇 panos trahanias
  • 6 篇 s.b. marapane
  • 6 篇 t. gandhi
  • 6 篇 brendan morris
  • 5 篇 michail maniadak...
  • 5 篇 bakas spyridon
  • 5 篇 gandhi tarak
  • 5 篇 g. ravichandran
  • 5 篇 eshed ohn-bar
  • 5 篇 reyes mauricio
  • 5 篇 menze bjoern
  • 5 篇 in so kweon

语言

  • 224 篇 英文
  • 8 篇 其他
  • 1 篇 中文
检索条件"机构=Computer Vision and Robotics Research Laboratory"
233 条 记 录,以下是11-20 订阅
排序:
Cross Domain Object Detection by Target-Perceived Dual Branch Distillation
arXiv
收藏 引用
arXiv 2022年
作者: He, Mengzhe Wang, Yali Wu, Jiaxi Wang, Yiru Li, Hanqing Li, Bo Gan, Weihao Wu, Wei Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences China SenseTime Research University of Chinese Academy of Science China Shanghai AI Laboratory Shanghai China Beihang University China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society China
Cross domain object detection is a realistic and challenging task in the wild. It suffers from performance degradation due to large shift of data distributions and lack of instance-level annotations in the target doma... 详细信息
来源: 评论
RDA: An Accelerated Collision Free Motion Planner for Autonomous Navigation in Cluttered Environments
arXiv
收藏 引用
arXiv 2022年
作者: Han, Ruihua Wang, Shuai Wang, Shuaijun Zhang, Zeqing Zhang, Qianru Eldar, Yonina C. Hao, Qi Pan, Jia The Department of Computer Science and Engineering Southern University of Science and Technology Guangdong Shenzhen China The Department of Computer Science The University of Hong Kong Hong Kong Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Guangdong Shenzhen China The Department of Computer Science and Engineering Harbin Institute of Technology Guangdong Shenzhen China The Weizmann Institute of Science Rehovot Israel The Department of Computer Science and Engineering The Shenzhen Key Laboratory of Robotics and Computer Vision The Sifakis Research Institute for Trustworthy Autonomous Systems Southern University of Science and Technology Guangdong Shenzhen China
Autonomous motion planning is challenging in multi-obstacle environments due to nonconvex collision avoidance constraints. Directly applying numerical solvers to these nonconvex formulations fails to exploit the const... 详细信息
来源: 评论
Fair Evaluation of Federated Learning Algorithms for Automated Breast Density Classification: The Results of the 2022 ACR-NCI-NVIDIA Federated Learning Challenge
arXiv
收藏 引用
arXiv 2024年
作者: Schmidt, Kendall Bearce, Benjamin Chang, Ken Coombs, Laura Farahani, Keyvan Elbatel, Marawan Mouheb, Kaouther Marti, Robert Zhang, Ruipeng Zhang, Yao Wang, Yanfeng Hu, Yaojun Ying, Haochao Xu, Yuyang Testagrose, Conrad Demirer, Mutlu Gupta, Vikash Akünal, Ünal Bujotzek, Markus Maier-Hein, Klaus H. Qin, Yi Li, Xiaomeng Kalpathy-Cramer, Jayashree Roth, Holger R. American College of Radiology United States The Massachusetts General Hospital United States University of Colorado United States National Institutes of Health National Cancer Institute United States Computer Vision and Robotics Institute University of Girona Spain Cooperative Medianet Innovation Center Shanghai Jiao Tong University China Shanghai AI Laboratory China Real Doctor AI Research Centre Zhejiang University China School of Public Health Zhejiang University China College of Computer Science and Technology Zhejiang University China University of North Florida College of Computing Jacksonville United States Mayo Clinic Florida Radiology United States Division of Medical Image Computing German Cancer Research Center Heidelberg Germany Electronic and Computer Engineering Hong Kong University of Science and Technology China NVIDIA United States
The correct interpretation of breast density is important in the assessment of breast cancer risk. AI has been shown capable of accurately predicting breast density, however, due to the differences in imaging characte... 详细信息
来源: 评论
NTIRE 2023 HR NonHomogeneous Dehazing Challenge Report
NTIRE 2023 HR NonHomogeneous Dehazing Challenge Report
收藏 引用
2023 IEEE/CVF Conference on computer vision and Pattern Recognition Workshops, CVPRW 2023
作者: Ancuti, Codruta O. Ancuti, Cosmin Vasluianu, Florin-Alexandru Timofte, Radu Zhou, Han Dong, Wei Liu, Yangyi Chen, Jun Liu, Huan Li, Liangyan Wu, Zijun Dong, Yubo Li, Yuyan Qiu, Tian He, Yu Lu, Yonghong Wu, Yinwei Jiang, Zhenxiang Liu, Songhua Yang, Xingyi Jing, Yongcheng Benjdira, Bilel Ali, Anas M. Koubaa, Anis Yang, Hao-Hsiang Chen, I-Hsiang Chen, Wei-Ting Huang, Zhi-Kai Chen, Yi-Chung Hsieh, Chia-Hsuan Chang, Hua-En Chiang, Yuan-Chun Kuo, Sy-Yen Guo, Yu Gao, Yuan Liu, Ryan Wen Lu, Yuxu Qu, Jingxiang He, Shengfeng Ren, Wenqi Hoang, Trung Zhang, Haichuan Yazdani, Amirsaeed Monga, Vishal Yang, Lehan Wu, Alex Jiahao Mai, Tiancheng Cong, Xiaofeng Yin, Xuemeng Yin, Xuefei Emad, Hazim Abdallah, Ahmed Yasser, Yahya Elshahat, Dalia Elbaz, Esraa Li, Zhan Kuang, Wenqing Luo, Ziwei Gustafsson, Fredrik K. Zhao, Zheng Sjölund, Jens Schön, Thomas B. Zhang, Zhao Wei, Yanyan Wang, Junhu Zhao, Suiyi Zheng, Huan Guo, Jin Sun, Yangfan Liu, Tianli Hao, Dejun Jiang, Kui Sarvaiya, Anjali Prajapati, Kalpesh Patra, Ratnadeep Barik, Pragnesh Rathod, Chaitanya Upla, Kishor Raja, Kiran Ramachandra, Raghavendra Busch, Christoph ETcTI Universitatea Politehnica Timisoara Romania ICTEAM UCL Belgium Computer Vision Lab University of Wuerzburg Germany Computer Vision Lab ETH Zurich Switzerland Department of Electrical and Computer Engineering McMaster University Canada Department of Electrical and Computer Engineering University of Alberta Canada McMaster University Canada Xidian University China Research Institute Singapore National University of Singapore Singapore University of Sydney Australia Robotics and Internet-of-Things Laboratory Prince Sultan University Riyadh12435 Saudi Arabia Department of Electrical Engineering National Taiwan University Taiwan Graduate Institute of Electronics Engineering National Taiwan University Taiwan Graduate Institute of Communication Engineering National Taiwan University Taiwan Wuhan University of Technology China Singapore Management University Singapore Singapore Sun Yat-sen University China Electrical Engineering Department Pennsylvania State University United States The University of Sydney Australia Southeast University China University of California Los Angeles United States Beijing Jiaotong University China Mansoura Univeristy Egypt College of Information Science and Technology Jinan University China Department of Information Technology Uppsala University Sweden Hefei University of Technology China Zhejiang Dahua Technology China Sardar Vallabhbhai National Institute of Technology India Norwegian University of Science and Technology Norway
This study assesses the outcomes of the NTIRE 2023 Challenge on Non-Homogeneous Dehazing, wherein novel techniques were proposed and evaluated on new image dataset called HD-NH-HAZE. The HD-NH-HAZE dataset contains 50... 详细信息
来源: 评论
CertainOdom: Uncertainty Weighted Multi-task Learning Model for LiDAR Odometry Estimation
CertainOdom: Uncertainty Weighted Multi-task Learning Model ...
收藏 引用
IEEE International Conference on robotics and Biomimetics
作者: Leyuan Sun Guanqun Ding Yusuke Yoshiyasu Fumio Kanehiro Department of Intelligent and Mechanical Interaction Systems Graduate School of Science and Technology University of Tsukuba Tsukuba Ibaraki Japan CNRS-AIST Joint Robotics Laboratory (JRL) IRL National Institute of Advanced Industrial Science and Technology (AIST). Digital Architecture Research Center (DARC) National Institute of Advanced Industrial Science and Technology (AIST) Tokyo Japan Computer Vision Research Team Artificial Intelligence Research Center (AIRC) National Institute of Advanced Industrial Science and Technology (AIST) Japan
As a basic and indispensable module, LiDAR odom-etry estimation is widely used in robotics. In recent years, learning-based modeling approaches for odometry estimation have been validated to be feasible. However, it i... 详细信息
来源: 评论
Self-slimmed vision Transformer
arXiv
收藏 引用
arXiv 2021年
作者: Zong, Zhuofan Li, Kunchang Song, Guanglu Wang, Yali Qiao, Yu Leng, Biao Liu, Yu School of Computer Science and Engineering Beihang University China SenseTime Research China ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society China Shanghai AI Laboratory China
vision transformers (ViTs) have become the popular structures and outperformed convolutional neural networks (CNNs) on various vision tasks. However, such powerful transformers bring a huge computation burden, because... 详细信息
来源: 评论
Learning Residual Flow as Dynamic Motion from Stereo Videos
Learning Residual Flow as Dynamic Motion from Stereo Videos
收藏 引用
2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
作者: Seokju Lee Sunghoon Im Stephen Lin In So Kweon Robotics and Computer Vision Laboratory KAIST Daejeon Republic of Korea Microsoft Research Asia Beijing China
We present a method for decomposing the 3D scene flow observed from a moving stereo rig into stationary scene elements and dynamic object motion. Our unsupervised learning framework jointly reasons about the camera mo...
来源: 评论
Learning residual flow as dynamic motion from stereo videos
arXiv
收藏 引用
arXiv 2019年
作者: Lee, Seokju Im, Sunghoon Lin, Stephen Kweon, In So Robotics and Computer Vision Laboratory KAIST Daejeon34141 Korea Republic of Microsoft Research Asia Beijing100080 China
We present a method for decomposing the 3D scene flow observed from a moving stereo rig into stationary scene elements and dynamic object motion. Our unsupervised learning framework jointly reasons about the camera mo... 详细信息
来源: 评论
Learning Context-Based Non-local Entropy Modeling for Image Compression
arXiv
收藏 引用
arXiv 2020年
作者: Timofte, Radu Zhang, David Zuo, Wangmeng Zhang, Kai Li, Mu School of Science and Engineering Chinese University of Hong Kong ShenzhenGuangdong518172 China Computer Vision Laboratory ETH Zurich Zurich Switzerland School of Computer Science and Technology Harbin Institute of Technology Harbin150001 China Shenzhen Research Institute of Big Data Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen China
The entropy of the codes usually serves as the rate loss in the recent learned lossy image compression methods. Precise estimation of the probabilistic distribution of the codes plays a vital role in the performance. ... 详细信息
来源: 评论
Placental Vessel Segmentation and Registration in Fetoscopy: Literature Review and MICCAI FetReg2021 Challenge Findings
arXiv
收藏 引用
arXiv 2022年
作者: Bano, Sophia Casella, Alessandro Vasconcelos, Francisco Qayyum, Abdul Benzinou, Abdesslam Mazher, Moona Meriaudeau, Fabrice Lena, Chiara Cintorrino, Ilaria Anita De Paolis, Gaia Romana Biagioli, Jessica Grechishnikova, Daria Jiao, Jing Bai, Bizhe Qiao, Yanyan Bhattarai, Binod Gaire, Rebati Raman Subedi, Ronast Vazquez, Eduard Plotka, Szymon Lisowska, Aneta Sitek, Arkadiusz Attilakos, George Wimalasundera, Ruwan David, Anna L. Paladini, Dario Deprest, Jan De Momi, Elena Mattos, Leonardo S. Moccia, Sara Stoyanov, Danail Department of Computer Science University College London United Kingdom Department of Advanced Robotics Istituto Italiano di Tecnologia Italy Department of Electronics Information and Bioengineering Politecnico di Milano Italy The BioRobotics Institute Department of Excellence in Robotics and AI Scuola Superiore Sant'Anna Italy Fetal Medicine Unit Elizabeth Garrett Anderson Wing University College London Hospital United Kingdom EGA Institute for Women's Health Faculty of Population Health Sciences University College London United Kingdom Department of Development and Regeneration University Hospital Leuven Belgium Department of Fetal and Perinatal Medicine Istituto Giannina Gaslini Italy ENIB UMR CNRS 6285 LabSTICC 29238 France Department of Computer Engineering and Mathematics University Rovira i Virgili Spain ImViA Laboratory University of Bourgogne Franche-Comté France Physics Department Lomonosov Moscow State University Russia Fudan University China Medical Computer Vision and Robotics Group Department of Mathematical and Computational Sciences University of Toronto Canada Co. Ltd China NepAL Applied Mathematics and Informatics Institute for Research Nepal Redev Technology United Kingdom Sano Center for Computational Medicine Poland Quantitative Healthcare Analysis Group Informatics Institute University of Amsterdam Amsterdam Netherlands Center for Advanced Medical Computing and Simulation Massachusetts General Hospital Harvard Medical School BostonMA United States
Fetoscopy laser photocoagulation is a widely adopted procedure for treating Twin-to-Twin Transfusion Syndrome (TTTS). The procedure involves photocoagulation pathological anastomoses to restore a physiological blood e... 详细信息
来源: 评论