咨询与建议

限定检索结果

文献类型

  • 38 篇 会议
  • 3 篇 期刊文献

馆藏范围

  • 41 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 5 篇 工学
    • 3 篇 计算机科学与技术...
    • 3 篇 软件工程
    • 2 篇 机械工程
    • 2 篇 光学工程
    • 1 篇 生物医学工程(可授...
    • 1 篇 安全科学与工程
  • 2 篇 理学
    • 2 篇 数学
    • 1 篇 物理学
    • 1 篇 统计学(可授理学、...
  • 2 篇 医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 临床医学

主题

  • 17 篇 cameras
  • 13 篇 computer vision
  • 11 篇 robot vision sys...
  • 9 篇 vehicle detectio...
  • 8 篇 layout
  • 7 篇 intelligent vehi...
  • 7 篇 detectors
  • 7 篇 vehicles
  • 6 篇 road vehicles
  • 6 篇 laboratories
  • 6 篇 vehicle driving
  • 5 篇 object detection
  • 5 篇 intelligent robo...
  • 5 篇 feature extracti...
  • 5 篇 robustness
  • 4 篇 head
  • 4 篇 roads
  • 4 篇 image segmentati...
  • 4 篇 surveillance
  • 4 篇 vehicle safety

机构

  • 17 篇 computer vision ...
  • 2 篇 school of mathem...
  • 2 篇 computer vision ...
  • 2 篇 department of ps...
  • 2 篇 computer vision ...
  • 2 篇 visual analysis ...
  • 2 篇 computer vision ...
  • 1 篇 departments of n...
  • 1 篇 school of cognit...
  • 1 篇 unic cnrs gif su...
  • 1 篇 department of ps...
  • 1 篇 neural basis of ...
  • 1 篇 faculty of healt...
  • 1 篇 ist austria klos...
  • 1 篇 state key labora...
  • 1 篇 informatics univ...
  • 1 篇 department of ph...
  • 1 篇 department of me...
  • 1 篇 sorbonne univers...
  • 1 篇 sapienza univers...

作者

  • 18 篇 m.m. trivedi
  • 7 篇 mohan m. trivedi
  • 7 篇 mohan trivedi
  • 4 篇 brendan morris
  • 3 篇 m. trivedi
  • 3 篇 o. achler
  • 3 篇 t. gandhi
  • 2 篇 i. mikic
  • 2 篇 eshed ohn-bar
  • 2 篇 g. kogut
  • 2 篇 andreas møgelmos...
  • 2 篇 thomas b. moeslu...
  • 2 篇 k.c. ng
  • 2 篇 shinko y. cheng
  • 2 篇 sangho park
  • 1 篇 he shucheng
  • 1 篇 toleshbayev dias
  • 1 篇 anup doshi
  • 1 篇 cho jaeyoung
  • 1 篇 m.a. trivedi

语言

  • 41 篇 英文
检索条件"机构=Computer Vision and Robotics Research LaboratoryLa Jolla"
41 条 记 录,以下是1-10 订阅
排序:
Efficient MedSAMs: Segment Anything in Medical Images on Laptop
arXiv
收藏 引用
arXiv 2024年
作者: Ma, Jun Li, Feifei Kim, Sumin Asakereh, Reza Le, Bao-Hiep Nguyen-Vu, Dang-Khoa Pfefferle, Alexander Wei, Muxin Gao, Ruochen Lyu, Donghang Yang, Songxiao Purucker, Lennart Marinov, Zdravko Staring, Marius Lu, Haisheng Dao, Thuy Thanh Ye, Xincheng Li, Zhi Brugnara, Gianluca Vollmuth, Philipp Foltyn-Dumitru, Martha Cho, Jaeyoung Mahmutoglu, Mustafa Ahmed Bendszus, Martin Pflüger, Irada Rastogi, Aditya Ni, Dong Yang, Xin Zhou, Guang-Quan Wang, Kaini Heller, Nicholas Papanikolopoulos, Nikolaos Weight, Christopher Tong, Yubing Udupa, Jayaram K. Patrick, Cahill J. Wang, Yaqi Zhang, Yifan Contijoch, Francisco McVeigh, Elliot Ye, Xin He, Shucheng Haase, Robert Pinetz, Thomas Radbruch, Alexander Krause, Inga Kobler, Erich He, Jian Tang, Yucheng Yang, Haichun Huo, Yuankai Luo, Gongning Kushibar, Kaisar Amankulov, Jandos Toleshbayev, Dias Mukhamejan, Amangeldi Egger, Jan Pepe, Antonio Gsaxner, Christina Luijten, Gijs Fujita, Shohei Kikuchi, Tomohiro Wiestler, Benedikt Kirschke, Jan S. de la Rosa, Ezequiel Bolelli, Federico Lumetti, Luca Grana, Costantino Xie, Kunpeng Wu, Guomin Puladi, Behrus Martín-Isla, Carlos Lekadir, Karim Campello, Victor M. Shao, Wei Brisbane, Wayne Jiang, Hongxu Wei, Hao Yuan, Wu Li, Shuangle Zhou, Yuyin Wang, Bo AI Collaborative Centre University Health Network Department of Laboratory Medicine and Pathobiology University of Toronto Vector Institute Toronto Canada Peter Munk Cardiac Centre University Health Network Toronto Canada Toronto General Hospital Research Institute University Health Network Department of Computer Science University of Toronto University Health Network Vector Institute Toronto Canada University of Science Vietnam National University Ho Chi Minh City Viet Nam Institute of Computer Science University of Freiburg Freiburg Germany School of Medicine and Health Harbin Institute of Technology Harbin China Division of Image Processing Department of Radiology Leiden University Medical Center Leiden Netherlands Department of System and Control Engineering School of Engineering Institute of Science Tokyo Formerly Tokyo Institute of Technology Tokyo Japan Institute for Anthropomatics and Robotics Karlsruhe Institute of Technology Karlsruhe Germany School of Information and Communication Engineering University of Electronic Science and Technology of China Chengdu China School of Electrical Engineering and Computer Science University of Queensland Brisbane Australia School of Cyberspace Hangzhou Dianzi University Hangzhou China Division for Computational Radiology and Clinical AI The Department of Neuroradiology University Hospital Bonn Germany Division for Computational Radiology and Clinical AI The Department of Neuroradiology University Hospital Bonn Germany Department of Neuroradiology Heidelberg University Hospital Heidelberg Germany Division for Computational Radiology and Clinical AI Department of Neuroradiology University Hospital Bonn Germany School of Biomedical Engineering Shenzhen University Shenzhen China School of Biological Science and Medical Engineering Southeast University Nanjing China Department of Urology Cleveland Clinic Cleveland United States Department of Computer Science University of Minnesota Minneapolis United St
Promptable segmentation foundation models have emerged as a transformative approach to addressing the diverse needs in medical images, but most existing models require expensive computing, posing a big barrier to thei... 详细信息
来源: 评论
Comprehensive parameter sweep for learning-based detector on traffic lights  12th
Comprehensive parameter sweep for learning-based detector on...
收藏 引用
12th International Symposium on Visual Computing, ISVC 2016
作者: Jensen, Morten B. Philipsen, Mark P. Moeslund, Thomas B. Trivedi, Mohan Visual Analysis of People Laboratory Aalborg University Aalborg Denmark Computer Vision and Robotics Research Laboratory UC San Diego La Jolla United States
Determining the optimal parameters for a given detection algorithm is not straightforward and what ends up as the final values is mostly based on experience and heuristics. In this paper we investigate the influence o... 详细信息
来源: 评论
Hidden Hands: Tracking Hands with an Occlusion Aware Tracker
Hidden Hands: Tracking Hands with an Occlusion Aware Tracker
收藏 引用
IEEE Conference on computer vision and Pattern Recognition Workshops
作者: Akshay Rangesh Eshed Ohn-Bar Mohan M. Trivedi Computer Vision and Robotics Research Lab University of California San Diego La Jolla CA
This work presents an occlusion aware hand tracker to reliably track both hands of a person using a monocular RGB camera. To demonstrate its robustness, we evaluate the tracker on a challenging, occlusion-ridden natur... 详细信息
来源: 评论
Traffic Light Detection: A Learning Algorithm and Evaluations on Challenging Dataset
Traffic Light Detection: A Learning Algorithm and Evaluation...
收藏 引用
International Conference on Intelligent Transportation
作者: Mark Philip Philipsen Morten Bornø Jensen Andreas Møgelmose Thomas B. Moeslund Mohan M. Trivedi UC San Diego Computer Vision and Robotics Research Laboratory La Jolla CA USA Visual Analysis of People Laboratory Aalborg University Aalborg Denmark
Traffic light recognition (TLR) is an integral part of any intelligent vehicle, which must function in the existing infrastructure. Pedestrian and sign detection have recently seen great improvements due to the introd... 详细信息
来源: 评论
Day and night-time drive analysis using stereo vision for naturalistic driving studies
Day and night-time drive analysis using stereo vision for na...
收藏 引用
IEEE Symposium on Intelligent Vehicle
作者: Mark P. Philipsen Morten B. Jensen Ravi K. Satzoda Mohan M. Trivedi Andreas Møgelmose Thomas B. Moeslund Computer Vision and Robotics Research Laboratory La Jolla CA USA Visual Analysis of People Laboratory Aalborg University Aal-borg Denmark Aalborg Universitet Aalborg DK
In order to understand dangerous situations in the driving environment, naturalistic driving studies (NDS) are conducted by collecting and analyzing data from sensors looking inside and outside of the car. Manually pr... 详细信息
来源: 评论
26th Annual Computational Neuroscience Meeting (CNS*2017): Part 3 Antwerp, Belgium. 15-20 July 2017 Abstracts
收藏 引用
BMC NEUROSCIENCE 2017年 第SUPPL 1期18卷 95-176页
作者: [Anonymous] Department of Neuroscience Yale University New Haven CT 06520 USA Department Physiology & Pharmacology SUNY Downstate Brooklyn NY 11203 USA NYU School of Engineering 6 MetroTech Center Brooklyn NY 11201 USA Departament de Matemàtica Aplicada Universitat Politècnica de Catalunya Barcelona 08028 Spain Institut de Neurobiologie de la Méditerrannée (INMED) INSERM UMR901 Aix-Marseille Univ Marseille France Center of Neural Science New York University New York NY USA Aix-Marseille Univ INSERM INS Inst Neurosci Syst Marseille France Laboratoire de Physique Théorique et Modélisation CNRS UMR 8089 Université de Cergy-Pontoise 95300 Cergy-Pontoise Cedex France Department of Mathematics and Computer Science ENSAT Abdelmalek Essaadi’s University Tangier Morocco Laboratory of Natural Computation Department of Information and Electrical Engineering and Applied Mathematics University of Salerno 84084 Fisciano SA Italy Department of Medicine University of Salerno 84083 Lancusi SA Italy Dipartimento di Fisica Università degli Studi Aldo Moro Bari and INFN Sezione Di Bari Italy Data Analysis Department Ghent University Ghent Belgium Coma Science Group University of Liège Liège Belgium Cruces Hospital and Ikerbasque Research Center Bilbao Spain BIOtech Department of Industrial Engineering University of Trento and IRCS-PAT FBK 38010 Trento Italy Department of Data Analysis Ghent University Ghent 9000 Belgium The Wellcome Trust Centre for Neuroimaging University College London London WC1N 3BG UK Department of Electronic Engineering NED University of Engineering and Technology Karachi Pakistan Blue Brain Project École Polytechnique Fédérale de Lausanne Lausanne Switzerland Departement of Mathematics Swansea University Swansea Wales UK Laboratory for Topology and Neuroscience at the Brain Mind Institute École polytechnique fédérale de Lausanne Lausanne Switzerland Institute of Mathematics University of Aberdeen Aberdeen Scotland UK Department of Integrativ
来源: 评论
25th Annual Computational Neuroscience Meeting CNS-2016, Seogwipo City, South Korea, July 2-7, 2016 Abstracts
收藏 引用
BMC NEUROSCIENCE 2016年 第1期17卷 1-112页
作者: [Anonymous] Computational Neurobiology Laboratory The Salk Institute for Biological Studies San Diego USA UNIC CNRS Gif sur Yvette France The European Institute for Theoretical Neuroscience (EITN) Paris France ATR Computational Neuroscience Laboratories Kyoto Japan Krembil Research Institute University Health Network Toronto Canada Department of Physiology University of Toronto Toronto Canada Department of Medicine (Neurology) University of Toronto Toronto Canada Department of Physics University of New Hampshire Durham USA Department of Neurophysiology Nencki Institute of Experimental Biology Warsaw Poland Department of Theory Wigner Research Centre for Physics of the Hungarian Academy of Sciences Budapest Hungary Department of Mathematical Sciences KAIST Daejoen Republic of Korea Department of Mathematics University of Houston Houston USA Department of Biochemistry & Cell Biology and Institute of Biosciences and Bioengineering Rice University Houston USA Department of Biology and Biochemistry University of Houston Houston USA Grupo de Neurocomputación Biológica Dpto. de Ingeniería Informática Escuela Politécnica Superior Universidad Autónoma de Madrid Madrid Spain Department of Biological Sciences University of Southern California Los Angeles USA Center for Neuroscience Korea Institute of Science and Technology Seoul South Korea Department of Neurology Albert Einstein College of Medicine Bronx USA Center for Neuroscience KIST Seoul South Korea Department of Neuroscience University of Science and Technology Daejon South Korea Systems Neuroscience Group QIMR Berghofer Medical Research Institute Herston Australia Department of Psychology Yonsei University Seoul South Korea Department of Psychiatry Kyung Hee University Hospital at Gangdong Seoul South Korea Department of Psychiatry Veterans Administration Boston Healthcare System and Harvard Medical School Brockton USA Department of Electrical and Electronic Engineering The University of Melbourne Parkvil
A1 Functional advantages of cell-type heterogeneity in neural circuits Tatyana O. Sharpee A2 Mesoscopic modeling of propagating waves in visual cortex Alain Destexhe A3 Dynamics and biomarkers of mental disorders Mits...
来源: 评论
Joint Angles Similarities and HOG2 for Action Recognition
Joint Angles Similarities and HOG2 for Action Recognition
收藏 引用
IEEE computer Society Conference on computer vision and Pattern Recognition Workshops (CVPRW)
作者: Eshed Ohn-Bar Mohan M. Trivedi Computer Vision and Robotics Research Laboratory University of California San Diego La Jolla CA USA
We propose a set of features derived from skeleton tracking of the human body and depth maps for the purpose of action recognition. The descriptors proposed are easy to implement, produce relatively small-sized featur... 详细信息
来源: 评论
Lidar based off-road negative obstacle detection and analysis
Lidar based off-road negative obstacle detection and analysi...
收藏 引用
International Conference on Intelligent Transportation
作者: Jacoby Larson Mohan Trivedi Computer Vision and Robotics Research Laboratory University of California San Diego La Jolla CA USA
In order for an autonomous unmanned ground vehicle (UGV) to drive in off-road terrain at high speeds, it must analyze and understand its surrounding terrain in realtime: it must know where it intends to go, where are ... 详细信息
来源: 评论
Boosting based object detection using a geometric model
Boosting based object detection using a geometric model
收藏 引用
IEEE International Conference on Image Processing
作者: Katharina Quast Christoph Seeger Mohan Trivedi André Kaup Multimedia Communications and Signal Processing University of Erlangen-Nuremberg Erlangen Germany Computer Vision and Robotics Research University of California San Diego La Jolla CA USA
In this paper we present a new method for automatic object detection in images and video sequences. As a classifier the popular Ad aBoost algorithm is used, that combines several weak classifiers into one strong class... 详细信息
来源: 评论