咨询与建议

限定检索结果

文献类型

  • 274 篇 会议
  • 113 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 388 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 202 篇 工学
    • 117 篇 计算机科学与技术...
    • 102 篇 软件工程
    • 66 篇 光学工程
    • 59 篇 控制科学与工程
    • 36 篇 信息与通信工程
    • 32 篇 生物工程
    • 29 篇 生物医学工程(可授...
    • 25 篇 机械工程
    • 23 篇 电子科学与技术(可...
    • 19 篇 电气工程
    • 18 篇 交通运输工程
    • 17 篇 仪器科学与技术
    • 17 篇 土木工程
    • 17 篇 船舶与海洋工程
    • 11 篇 动力工程及工程热...
    • 11 篇 航空宇航科学与技...
    • 10 篇 水利工程
    • 10 篇 化学工程与技术
    • 9 篇 安全科学与工程
  • 120 篇 理学
    • 53 篇 物理学
    • 40 篇 数学
    • 36 篇 生物学
    • 14 篇 统计学(可授理学、...
    • 10 篇 化学
  • 26 篇 管理学
    • 20 篇 管理科学与工程(可...
    • 10 篇 工商管理
  • 25 篇 医学
    • 22 篇 临床医学
    • 21 篇 基础医学(可授医学...
    • 13 篇 药学(可授医学、理...
    • 8 篇 公共卫生与预防医...
  • 8 篇 农学
  • 4 篇 经济学
  • 3 篇 法学
  • 2 篇 教育学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 55 篇 cameras
  • 55 篇 computer vision
  • 39 篇 robot vision sys...
  • 28 篇 navigation
  • 23 篇 image segmentati...
  • 20 篇 feature extracti...
  • 20 篇 layout
  • 17 篇 underwater vehic...
  • 17 篇 robots
  • 15 篇 mobile robots
  • 15 篇 trajectory
  • 15 篇 vehicles
  • 14 篇 robot sensing sy...
  • 13 篇 application soft...
  • 12 篇 accuracy
  • 12 篇 shape
  • 12 篇 robustness
  • 11 篇 pixel
  • 11 篇 image edge detec...
  • 11 篇 robotics and aut...

机构

  • 29 篇 computer vision ...
  • 27 篇 computer vision ...
  • 15 篇 embedded vision ...
  • 8 篇 computer vision ...
  • 7 篇 embedded vision ...
  • 7 篇 computer vision ...
  • 7 篇 computer vision ...
  • 7 篇 intelligent robo...
  • 6 篇 girona magnetic ...
  • 4 篇 icteam universit...
  • 4 篇 catec advanced c...
  • 4 篇 computer vision ...
  • 4 篇 department of qu...
  • 4 篇 intelligent robo...
  • 4 篇 computer vision ...
  • 4 篇 czech institute ...
  • 4 篇 computer vision ...
  • 4 篇 department of in...
  • 4 篇 le2i-umr cnrs 51...
  • 4 篇 heidelberg

作者

  • 30 篇 kryjak tomasz
  • 14 篇 r. garcia
  • 14 篇 pascual campoy
  • 13 篇 x. cufi
  • 13 篇 joaquim salvi
  • 13 篇 garcia rafael
  • 13 篇 oliver arnau
  • 13 篇 rafael garcia
  • 11 篇 marc carreras
  • 11 篇 martí robert
  • 10 篇 j. batlle
  • 10 篇 j. gómez ortega
  • 10 篇 j. marti
  • 10 篇 j. freixenet
  • 9 篇 meriaudeau fabri...
  • 9 篇 arnau oliver
  • 9 篇 p. ridao
  • 9 篇 puig domenec
  • 9 篇 lladó xavier
  • 8 篇 a. oliver

语言

  • 381 篇 英文
  • 6 篇 其他
  • 1 篇 中文
检索条件"机构=Computer Vision and Robotics group"
388 条 记 录,以下是101-110 订阅
排序:
Placental Vessel Segmentation and Registration in Fetoscopy: Literature Review and MICCAI FetReg2021 Challenge Findings
arXiv
收藏 引用
arXiv 2022年
作者: Bano, Sophia Casella, Alessandro Vasconcelos, Francisco Qayyum, Abdul Benzinou, Abdesslam Mazher, Moona Meriaudeau, Fabrice Lena, Chiara Cintorrino, Ilaria Anita De Paolis, Gaia Romana Biagioli, Jessica Grechishnikova, Daria Jiao, Jing Bai, Bizhe Qiao, Yanyan Bhattarai, Binod Gaire, Rebati Raman Subedi, Ronast Vazquez, Eduard Plotka, Szymon Lisowska, Aneta Sitek, Arkadiusz Attilakos, George Wimalasundera, Ruwan David, Anna L. Paladini, Dario Deprest, Jan De Momi, Elena Mattos, Leonardo S. Moccia, Sara Stoyanov, Danail Department of Computer Science University College London United Kingdom Department of Advanced Robotics Istituto Italiano di Tecnologia Italy Department of Electronics Information and Bioengineering Politecnico di Milano Italy The BioRobotics Institute Department of Excellence in Robotics and AI Scuola Superiore Sant'Anna Italy Fetal Medicine Unit Elizabeth Garrett Anderson Wing University College London Hospital United Kingdom EGA Institute for Women's Health Faculty of Population Health Sciences University College London United Kingdom Department of Development and Regeneration University Hospital Leuven Belgium Department of Fetal and Perinatal Medicine Istituto Giannina Gaslini Italy ENIB UMR CNRS 6285 LabSTICC 29238 France Department of Computer Engineering and Mathematics University Rovira i Virgili Spain ImViA Laboratory University of Bourgogne Franche-Comté France Physics Department Lomonosov Moscow State University Russia Fudan University China Medical Computer Vision and Robotics Group Department of Mathematical and Computational Sciences University of Toronto Canada Co. Ltd China NepAL Applied Mathematics and Informatics Institute for Research Nepal Redev Technology United Kingdom Sano Center for Computational Medicine Poland Quantitative Healthcare Analysis Group Informatics Institute University of Amsterdam Amsterdam Netherlands Center for Advanced Medical Computing and Simulation Massachusetts General Hospital Harvard Medical School BostonMA United States
Fetoscopy laser photocoagulation is a widely adopted procedure for treating Twin-to-Twin Transfusion Syndrome (TTTS). The procedure involves photocoagulation pathological anastomoses to restore a physiological blood e... 详细信息
来源: 评论
P1AC: Revisiting Absolute Pose From a Single Affine Correspondence
arXiv
收藏 引用
arXiv 2020年
作者: Ventura, Jonathan Kukelova, Zuzana Sattler, Torsten Baráth, Dániel Department of Computer Science & Software Engineering Cal Poly San Luis Obispo United States Visual Recognition Group Faculty of Electrical Engineering Czech Technical University in Prague Czech Republic Czech Institute of Informatics Robotics and Cybernetics Czech Technical University in Prague Czech Republic Computer Vision and Geometry Group ETH Zürich Switzerland
Affine correspondences have traditionally been used to improve feature matching over wide baselines. While recent work has successfully used affine correspondences to solve various relative camera pose estimation prob...
来源: 评论
SR-LSTM: State Refinement for LSTM towards Pedestrian Trajectory Prediction
SR-LSTM: State Refinement for LSTM towards Pedestrian Trajec...
收藏 引用
IEEE/CVF Conference on computer vision and Pattern Recognition
作者: Pu Zhang Wanli Ouyang Pengfei Zhang Jianru Xue Nanning Zheng Institute of Artificial Intelligence and Robotics Xian Jiaotong University The University of Sydney SenseTime Computer Vision Research Group
In crowd scenarios, reliable trajectory prediction of pedestrians requires insightful understanding of their social behaviors. These behaviors have been well investigated by plenty of studies, while it is hard to be f... 详细信息
来源: 评论
Measuring (In)variances in convolutional networks  7th
Measuring (In)variances in convolutional networks
收藏 引用
7th International Conference on Cloud Computing and Big Data, JCC and BD 2019
作者: Quiroga, Facundo Torrents-Barrena, Jordina Lanzarini, Laura Puig, Domenec Instituto de Investigación en Informática LIDI Facultad de Informática Universidad Nacional de La Plata La Plata Argentina Intelligent Robotics and Computer Vision Group Universitat Rovira i Virgili Tarragona Spain
Convolutional neural networks (CNN) offer state-of-the-art performance in various computer vision tasks such as activity recognition, face detection, medical image analysis, among others. Many of those tasks need inva... 详细信息
来源: 评论
SR-LSTM: State refinement for LSTM towards pedestrian trajectory prediction
arXiv
收藏 引用
arXiv 2019年
作者: Zhang, Pu Ouyang, Wanli Zhang, Pengfei Xue, Jianru Zheng, Nanning Institute of Artificial Intelligence and Robotics Xian Jiaotong University China University of Sydney SenseTime Computer Vision Research Group Australia
In crowd scenarios, reliable trajectory prediction of pedestrians requires insightful understanding of their social behaviors. These behaviors have been well investigated by plenty of studies, while it is hard to be f... 详细信息
来源: 评论
Conditional Affordance Learning for Driving in Urban Environments  2
Conditional Affordance Learning for Driving in Urban Environ...
收藏 引用
2nd Conference on Robot Learning, CoRL 2018
作者: Sauer, Axel Savinov, Nikolay Geiger, Andreas Computer Vision and Geometry Group ETH Zürich Switzerland Robotics Science and System Intelligence Technical University of Munich Germany Autonomous Vision Group MPI for Intelligent Systems University of Tübingen Germany
Most existing approaches to autonomous driving fall into one of two categories: modular pipelines, that build an extensive model of the environment, and imitation learning approaches, that map images directly to contr... 详细信息
来源: 评论
REFUGE2 CHALLENGE: A TREASURE TROVE FOR MULTI-DIMENSION ANALYSIS AND EVALUATION IN GLAUCOMA SCREENING
arXiv
收藏 引用
arXiv 2022年
作者: Fang, Huihui Li, Fei Wu, Junde Fu, Huazhu Sun, Xu Son, Jaemin Yu, Shuang Zhang, Menglu Yuan, Chenglang Bian, Cheng Lei, Baiying Zhao, Benjian Xu, Xinxing Li, Shaohua Fumero, Francisco Sigut, José Almubarak, Haidar Bazi, Yakoub Guo, Yuanhao Zhou, Yating Baid, Ujjwal Innani, Shubham Guo, Tianjiao Yang, Jie Orlando, José Ignacio Bogunović, Hrvoje Zhang, Xiulan Xu, Yanwu The REFUGE2 Challenge Australia State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat-Sen University Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science Guangzhou China Intelligent Healthcare Unit Baidu Inc. Beijing China The Institute of High Performance Computing Agency for Science Technology and Research Singapore Yatiris Group PLADEMA Institute CONICET UNICEN Tandil Argentina Christian Doppler Lab for Artificial Intelligence in Retina Department of Ophthalmology and Optometry Medical University of Vienna Vienna Austria VUNO Inc Seoul Korea Republic of Tencent HealthCare Tencent Shenzhen China Computer Vision Institute College of Computer Science and Software Engineering of Shenzhen University Shenzhen China School of Biomedical Engineering Health Science Center Shenzhen University China Xiaohe Healthcare ByteDance Guangdong Guangzhou510000 China School of Biomedical Engineering Shenzhen University China College of Computer Science & Software Engineering Shenzhen University China Department of Computer Science and Systems Engineering Universidad de La Laguna Spain Saudi Electronic University Saudi Arabia King Saud University Saudi Arabia Institute of Automation Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences Beijing China SGGS Institute of Engineering and Technology India Institute of Medical Robotics Shanghai Jiao Tong University China Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University China
With the rapid development of artificial intelligence (AI) in medical image processing, deep learning in color fundus photography (CFP) analysis is also evolving. Although there are some open-source, labeled datasets ... 详细信息
来源: 评论
Pose-Driven Deep Models for Person Re-Identification
arXiv
收藏 引用
arXiv 2018年
作者: Eberle, Andreas Computer Vision for Human-Computer Interaction Research Group Institute for Anthropomatics and Robotics Karlsruhe Institute of Technology
Person re-identification (re-id) is the task of recognizing and matching persons at different locations recorded by cameras with non-overlapping views. One of the main challenges of re-id is the large variance in pers... 详细信息
来源: 评论
Towards multi-object detection and tracking in urban scenario under uncertainties  4
Towards multi-object detection and tracking in urban scenari...
收藏 引用
4th International Conference on Vehicle Technology and Intelligent Transport Systems, VEHITS 2018
作者: Kampker, Achim Sefati, Mohsen Abdul Rachman, Arya S. Kreisköther, Kai Campoy, Pascual Chair of Production Engineering of E-Mobility Components RWTH Aachen University Aachen Germany Delft Center for Systems and Control Delft University of Technology Delft Netherlands Computer Vision and Aerial Robotics Group Centre of Automatics and Robotics Universidad Politécnica de Madrid Madrid Spain
Urban-oriented autonomous vehicles require a reliable perception technology to tackle the high amount of uncertainties. The recently introduced compact 3D LIDAR sensor offers a surround spatial information that can be... 详细信息
来源: 评论
Conditional affordance learning for driving in urban environments
arXiv
收藏 引用
arXiv 2018年
作者: Sauer, Axel Savinov, Nikolay Geiger, Andreas Computer Vision and Geometry Group ETH Zürich Chair of Robotics Science and System Intelligence Technical University of Munich Autonomous Vision Group MPI for Intelligent Systems and University of Tübingen
Most existing approaches to autonomous driving fall into one of two categories: Modular pipelines, that build an extensive model of the environment, and imitation learning approaches, that map images directly to contr... 详细信息
来源: 评论