咨询与建议

限定检索结果

文献类型

  • 62 篇 会议
  • 58 篇 期刊文献

馆藏范围

  • 120 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 79 篇 工学
    • 54 篇 计算机科学与技术...
    • 49 篇 软件工程
    • 25 篇 光学工程
    • 22 篇 生物工程
    • 21 篇 生物医学工程(可授...
    • 20 篇 信息与通信工程
    • 10 篇 电气工程
    • 9 篇 控制科学与工程
    • 4 篇 机械工程
    • 4 篇 电子科学与技术(可...
    • 4 篇 网络空间安全
    • 3 篇 仪器科学与技术
    • 3 篇 建筑学
    • 3 篇 土木工程
    • 2 篇 化学工程与技术
    • 2 篇 核科学与技术
  • 50 篇 理学
    • 24 篇 生物学
    • 17 篇 数学
    • 17 篇 物理学
    • 5 篇 统计学(可授理学、...
    • 3 篇 化学
    • 2 篇 系统科学
  • 20 篇 管理学
    • 16 篇 图书情报与档案管...
    • 4 篇 管理科学与工程(可...
  • 15 篇 医学
    • 13 篇 临床医学
    • 10 篇 基础医学(可授医学...
    • 8 篇 药学(可授医学、理...
    • 4 篇 公共卫生与预防医...
  • 3 篇 法学
    • 3 篇 社会学
  • 3 篇 农学
  • 1 篇 教育学
    • 1 篇 教育学
  • 1 篇 军事学

主题

  • 12 篇 computer vision
  • 8 篇 image segmentati...
  • 8 篇 feature extracti...
  • 5 篇 gabor filters
  • 4 篇 neural networks
  • 4 篇 lung cancer
  • 4 篇 object recogniti...
  • 3 篇 covid-19
  • 3 篇 object detection
  • 3 篇 self-supervised ...
  • 3 篇 computational mo...
  • 3 篇 shape
  • 3 篇 training
  • 3 篇 convolutional ne...
  • 3 篇 layout
  • 2 篇 image enhancemen...
  • 2 篇 knowledge based ...
  • 2 篇 reliability
  • 2 篇 scalability
  • 2 篇 neurons

机构

  • 8 篇 university of sc...
  • 5 篇 graduate institu...
  • 5 篇 nanjing universi...
  • 5 篇 peking universit...
  • 5 篇 heidelberg
  • 5 篇 department of el...
  • 4 篇 south china univ...
  • 4 篇 centre for medic...
  • 4 篇 department of qu...
  • 4 篇 department of co...
  • 4 篇 heidelberg divis...
  • 4 篇 universitat pomp...
  • 4 篇 hefei university...
  • 4 篇 ihu strasbourg s...
  • 4 篇 department of pa...
  • 4 篇 computer vision ...
  • 4 篇 harbin institute...
  • 4 篇 machine vision a...
  • 4 篇 department of me...
  • 4 篇 faculty of mathe...

作者

  • 11 篇 singh koushlendr...
  • 9 篇 timofte radu
  • 9 篇 nair madhu s.
  • 8 篇 zhi-qiang liu
  • 7 篇 bakas spyridon
  • 7 篇 menze bjoern
  • 6 篇 reinke annika
  • 6 篇 madhu s. nair
  • 5 篇 zhang dafeng
  • 5 篇 reyes mauricio
  • 5 篇 kofler florian
  • 4 篇 kozubek michal
  • 4 篇 galdran adrian
  • 4 篇 ren jiahuan
  • 4 篇 chen chen
  • 4 篇 godau patrick
  • 4 篇 zhang zhao
  • 4 篇 glocker ben
  • 4 篇 summers ronald m...
  • 4 篇 eisenmann matthi...

语言

  • 114 篇 英文
  • 6 篇 其他
检索条件"机构=Computer Vision and hIachine Intelligence Lab Department of Computer Science"
120 条 记 录,以下是31-40 订阅
排序:
Efficient Single-Image Depth Estimation on Mobile Devices, Mobile AI & AIM 2022 Challenge: Report  17th
Efficient Single-Image Depth Estimation on Mobile Devices, ...
收藏 引用
17th European Conference on computer vision, ECCV 2022
作者: Ignatov, Andrey Malivenko, Grigory Timofte, Radu Treszczotko, Lukasz Chang, Xin Ksiazek, Piotr Lopuszynski, Michal Pioro, Maciej Rudnicki, Rafal Smyl, Maciej Ma, Yujie Li, Zhenyu Chen, Zehui Xu, Jialei Liu, Xianming Jiang, Junjun Shi, XueChao Xu, Difan Li, Yanan Wang, Xiaotao Lei, Lei Zhang, Ziyu Wang, Yicheng Huang, Zilong Luo, Guozhong Yu, Gang Fu, Bin Li, Jiaqi Wang, Yiran Huang, Zihao Cao, Zhiguo Conde, Marcos V. Sapozhnikov, Denis Lee, Byeong Hyun Park, Dongwon Hong, Seongmin Lee, Joonhee Lee, Seunggyu Chun, Se Young Computer Vision Lab ETH Zürich Zürich Switzerland AI Witchlabs Zollikerberg Switzerland University of Wuerzburg Wuerzburg Germany TCL Research Europe Warsaw Poland Harbin Institute of Technology Harbin China Xiaomi Inc. Beijing China Tencent GY-Lab Shenzhen China National Key Laboratory of Science and Technology on Multi-Spectral Information Processing School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan China Department of Electrical and Computer Engineering Seoul National University Seoul Korea Republic of
Various depth estimation models are now widely used on many mobile and IoT devices for image segmentation, bokeh effect rendering, object tracking and many other mobile tasks. Thus, it is very crucial to have efficien... 详细信息
来源: 评论
CUSUM Based Concept Drift Detector for Data Stream Clustering  20
CUSUM Based Concept Drift Detector for Data Stream Clusterin...
收藏 引用
4th International Conference on Big Data and Internet of Things, BDIOT 2020
作者: Namitha, K. Santhosh Kumar, G. Artificial Intelligence and Computer Vision Lab Department of Computer Science Cochin University of Science and Technology Kochi India
The last few decades mark an unprecedented growth in the number of applications producing high-speed data streams. Learning from such fast data streams has many inherent challenges. The dynamic change in the concept o... 详细信息
来源: 评论
Online Self-distillation and Self-modeling for 3D Brain Tumor Segmentation
收藏 引用
IEEE Journal of Biomedical and Health Informatics 2025年 PP卷 PP页
作者: Pang, Yan Li, Yunhao Huang, Teng Liang, Jiaming Wang, Zhen Dong, Changyu Kuang, Dongyang Hu, Ying Chen, Hao Lei, Tim Wang, Qiong The Guangdong Provincial Key Laboratory of Computer Vision and Virtual Reality Technology Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen China The School of Artificial Intelligence Guangzhou University China The Zhejiang Lab Hangzhou China Sun Yat-sen University China The Department of Computer Science and Engineering The Department of Chemical and Biological Engineering Hong Kong University of Science and Technology China The Department of Electrical Engineering University of Colorado Denver United States
In the specialized domain of brain tumor segmentation, supervised segmentation approaches are hindered by the limited availability of high-quality labeled data, a condition arising from data privacy concerns, signific... 详细信息
来源: 评论
2D Semantic Segmentation of the Prostate Gland in Magnetic Resonance Images using Convolutional Neural Networks
收藏 引用
IFAC-PapersOnLine 2021年 第15期54卷 394-399页
作者: Silvia P. Vacacela Marco E. Benalcázar Artificial Intelligence and Computer Vision Research Lab Department of Computer Science and Informatics Escuela Politécnica Nacional Quito Ecuador
Convolutional Neural Networks is one of the most commonly used methods for automatic prostate segmentation. However, few studies focus on the segmentation of the two main zones of the prostate: the central gland and t... 详细信息
来源: 评论
EFFICIENT ONLINE labEL CONSISTENT HASHING FOR LARGE-SCALE CROSS-MODAL RETRIEVAL
EFFICIENT ONLINE LABEL CONSISTENT HASHING FOR LARGE-SCALE CR...
收藏 引用
2021 IEEE International Conference on Multimedia and Expo, ICME 2021
作者: Yi, Jinhan Liu, Xin Cheung, Yiu-Ming Xu, Xing Fan, Wentao He, Yi Department of Computer Science and Technology Huaqiao University Xiamen361021 China Xiamen Key Lab. of Computer Vision and Pattern Recognition Fujian Key Lab. of Big Data Intelligence and Security China Department of Computer Science Hong Kong Baptist University Kowloon Hong Kong School of Computer Science and Engineering University of Electronic Science and Technology of China China Provincial Key Laboratory for Computer Information Processing Technology Soochow University China
Existing cross-modal hashing still faces three challenges: (1) Most batch-based methods are unsuitable for processing large-scale and streaming data. (2) Current online methods often suffer from insufficient semantic ... 详细信息
来源: 评论
vision Transformer Based Automated Model for Enhancing Lung Cancer Classification
Vision Transformer Based Automated Model for Enhancing Lung ...
收藏 引用
IEEE International Workshop on Imaging Systems and Techniques (IST)
作者: Akbar Sheikh Akbari Arvind Kumar B Ramachandra Reddy Koushlendra Kumar Singh Masahiro Takei Leeds Beckett University UK Machine Vision and Intelligence Lab National Institute of Technology Jamshedpur Jharkhand India Computer Science and Engineering National Institute of Technology Jamshedpur Jharkhand India Department of Mechanical Engineering Chiba University Chiba Japan
Lung cancer is one of the leading causes of cancer related mortality. The early detection and classification of the cancers tissues will reduce the mortalities rate. The present research focus on the development of au... 详细信息
来源: 评论
Correction to: DNACoder: a CNN-LSTM attention-based network for genomic sequence data compression (Neural Computing and Applications, (2024), 36, 29, (18363-18376), 10.1007/s00521-024-10130-4)
收藏 引用
Neural Computing and Applications 2025年
作者: Sheena, K.S. Nair, Madhu S. Artificial Intelligence & Computer Vision Lab Department of Computer Science Cochin University of Science and Technology Kerala Kochi682022 India
In this article, the Eq. (2) and Eq. (3) were incorrectly displayed and it should have been displayed as given below (Formula presented.) (Formula presented.) where n is the total number of key-value pairs i...
来源: 评论
Self-Ensembling Depth Completion Via Density-Aware Consistency
SSRN
收藏 引用
SSRN 2023年
作者: Zhang, Xuanmeng Zheng, Zhedong Jiang, Minyue Ye, Xiaoqing The ReLER Laboratory Australian Artificial Intelligence Institute University of Technology SydneyNSW2007 Australia The Sea-NExT Joint Lab The Department of Computer Science School of Computing National University of Singapore Singapore117417 Singapore The Department of Computer Vision Technology Baidu Inc. Beijing100085 China
Depth completion can predict a dense depth map by taking a sparse depth map and the aligned RGB image as input, but the acquisition of ground truth annotations is labor-intensive and non-scalable. Therefore, we resort... 详细信息
来源: 评论
CLASSIFICATION OF LUNG CANCER SUBTYPES ON CT IMAGES WITH SYNTHETIC PATHOLOGICAL PRIORS
arXiv
收藏 引用
arXiv 2023年
作者: Zhu, Wentao Jin, Yuan Ma, Gege Chen, Geng Egger, Jan Zhang, Shaoting Metaxas, Dimitris N. Research Center for Healthcare Data Science Zhejiang Lab Hangzhou311121 China School of Computer Science and Engineering Northwestern Polytechnical University Shaanxi Xi’an710072 China Institute of Computer Graphics and Vision Graz University of Technology Graz8010 Austria Shanghai Artificial Intelligence Laboratory Shanghai200120 China Department of Computer Science Rutgers University PiscatawayNJ08854 United States
The accurate diagnosis on pathological subtypes for lung cancer is of significant importance for the follow-up treatments and prognosis managements. In this paper, we propose self-generating hybrid feature network (SG... 详细信息
来源: 评论
On the analysis of HEVC Intra Prediction Mode Decision Variants  3
On the analysis of HEVC Intra Prediction Mode Decision Varia...
收藏 引用
3rd International Conference on Computing and Network Communications, CoCoNet 2019
作者: Nair, Preethi S. Nair, Madhu S. Department of Computer Science University of Kerala Kariavattom Thiruvananthapuram Kerala695581 India Artificial Intelligence and Computer Vision Lab Department of Computer Science Cochin University of Science and Technology Kochi Kerala682022 India
This paper presents a comparative analysis of some major High Efficiency Video Coding (HEVC) intra prediction mode decision methods reported in the literature. Intra coding in HEVC is based on spatial sample predictio... 详细信息
来源: 评论