Real-time systems are widely implemented in the Internet of Things(IoT) and safety-critical systems, both of which have generated enormous social value. Aiming at the classic schedulability analysis problem in real-ti...
详细信息
Real-time systems are widely implemented in the Internet of Things(IoT) and safety-critical systems, both of which have generated enormous social value. Aiming at the classic schedulability analysis problem in real-time systems, we proposed an exact Boolean analysis based on interference(EBAI) for schedulability analysis in real-time systems. EBAI is based on worst-case interference time(WCIT), which considers both the release jitter and blocking time of the task. We improved the efficiency of the three existing tests and provided a comprehensive summary of related research results in the field. Abundant experiments were conducted to compare EBAI with other related results. Our evaluation showed that in certain cases, the runtime gain achieved using our analysis method may exceed 73% compared to the stateof-the-art schedulability test. Furthermore, the benefits obtained from our tests grew with the number of tasks, reaching a level suitable for practical application. EBAI is oriented to the five-tuple real-time task model with stronger expression ability and possesses a low runtime overhead. These characteristics make it applicable in various real-time systems such as spacecraft, autonomous vehicles, industrial robots, and traffic command systems.
Predicting RNA binding protein(RBP) binding sites on circular RNAs(circ RNAs) is a fundamental step to understand their interaction mechanism. Numerous computational methods are developed to solve this problem, but th...
详细信息
Predicting RNA binding protein(RBP) binding sites on circular RNAs(circ RNAs) is a fundamental step to understand their interaction mechanism. Numerous computational methods are developed to solve this problem, but they cannot fully learn the features. Therefore, we propose circ-CNNED, a convolutional neural network(CNN)-based encoding and decoding framework. We first adopt two encoding methods to obtain two original matrices. We preprocess them using CNN before fusion. To capture the feature dependencies, we utilize temporal convolutional network(TCN) and CNN to construct encoding and decoding blocks, respectively. Then we introduce global expectation pooling to learn latent information and enhance the robustness of circ-CNNED. We perform circ-CNNED across 37 datasets to evaluate its effect. The comparison and ablation experiments demonstrate that our method is superior. In addition, motif enrichment analysis on four datasets helps us to explore the reason for performance improvement of circ-CNNED.
The increasing prevalence of drones has raised significant concerns regarding their potential for misuse in activities such as smuggling, terrorism, and unauthorized access to restricted airspace. Consequently, the de...
详细信息
CircRNA-disease association(CDA) can provide a new direction for the treatment of diseases. However,traditional biological experiment is time-consuming and expensive, this urges us to propose the reliable computationa...
详细信息
CircRNA-disease association(CDA) can provide a new direction for the treatment of diseases. However,traditional biological experiment is time-consuming and expensive, this urges us to propose the reliable computational model to predict the associations between circRNAs and diseases. And there is existing more and more evidence indicates that the combination of multi-biomolecular information can improve the prediction accuracy. We propose a novel computational model for CDA prediction named MBCDA, we collect the multi-biomolecular information including circRNA, disease, miRNA and lncRNA based on 6 databases, and construct three heterogeneous network among them, then the multi-heads graph attention networks are applied to these three networks to extract the features of circRNAs and diseases from different views, the obtained features are put into variational graph auto-encoder(VGAE) network to learn the latent distributions of the nodes, a fully connected neural network is adopted to further process the output of VGAE and uses sigmoid function to obtain the predicted probabilities of circRNA-disease *** a result, MBCDA achieved the values of AUC and AUPR under 5-fold cross-validation of 0.893 and 0.887. MBCDA was applied to the analysis of the top-25 predicted associations between circRNAs and diseases, these experimental results show that our proposed MBCDA is a powerful computational model for CDA prediction.
Drug-target interactions(DTIs) prediction plays an important role in the process of drug *** computational methods treat it as a binary prediction problem, determining whether there are connections between drugs and t...
详细信息
Drug-target interactions(DTIs) prediction plays an important role in the process of drug *** computational methods treat it as a binary prediction problem, determining whether there are connections between drugs and targets while ignoring relational types information. Considering the positive or negative effects of DTIs will facilitate the study on comprehensive mechanisms of multiple drugs on a common target, in this work, we model DTIs on signed heterogeneous networks, through categorizing interaction patterns of DTIs and additionally extracting interactions within drug pairs and target protein pairs. We propose signed heterogeneous graph neural networks(SHGNNs), further put forward an end-to-end framework for signed DTIs prediction, called SHGNN-DTI,which not only adapts to signed bipartite networks, but also could naturally incorporate auxiliary information from drug-drug interactions(DDIs) and protein-protein interactions(PPIs). For the framework, we solve the message passing and aggregation problem on signed DTI networks, and consider different training modes on the whole networks consisting of DTIs, DDIs and PPIs. Experiments are conducted on two datasets extracted from Drug Bank and related databases, under different settings of initial inputs, embedding dimensions and training modes. The prediction results show excellent performance in terms of metric indicators, and the feasibility is further verified by the case study with two drugs on breast cancer.
Inspired by basic circuit connection methods,memristors can also be utilized in the construction of complex discrete chaotic *** investigate the dynamical effects of hybrid memristors,we propose two hybrid tri-memrist...
详细信息
Inspired by basic circuit connection methods,memristors can also be utilized in the construction of complex discrete chaotic *** investigate the dynamical effects of hybrid memristors,we propose two hybrid tri-memristor hyperchaotic(HTMH)mapping structures based on the hybrid parallel/cascade and cascade/parallel operations,*** the HTMH mapping structure with hybrid parallel/cascade operation as an example,this map possesses a spatial invariant set whose stability is closely related to the initial states of the *** distributions and bifurcation behaviours dependent on the control parameters are explored with numerical ***,the memristor initial offset-boosting mechanism is theoretically demonstrated,and memristor initial offset-boosting behaviours are numerically *** results clarify that the HTMH map can exhibit hyperchaotic behaviours and extreme multistability with homogeneous coexisting infinite *** addition,an FPGA hardware platform is fabricated to implement the HTMH map and generate pseudorandom numbers(PRNs)with high ***,the generated PRNs can be applied in Wasserstein generative adversarial nets(WGANs)to enhance training stability and generation capability.
Data-driven garment animation is a current topic of interest in the computer graphics *** approaches generally establish the mapping between a single human pose or a temporal pose sequence,and garment deformation,but ...
详细信息
Data-driven garment animation is a current topic of interest in the computer graphics *** approaches generally establish the mapping between a single human pose or a temporal pose sequence,and garment deformation,but it is difficult to quickly generate diverse clothed human *** address this problem with a method to automatically synthesize dressed human animations with temporal consistency from a specified human motion *** the heart of our method is a twostage ***,we first learn a latent space encoding the sequence-level distribution of human motions utilizing a transformer-based conditional variational autoencoder(Transformer-CVAE).Then a garment simulator synthesizes dynamic garment shapes using a transformer encoder-decoder *** the learned latent space comes from varied human motions,our method can generate a variety of styles of motions given a specific motion *** means of a novel beginning of sequence(BOS)learning strategy and a self-supervised refinement procedure,our garment simulator is capable of efficiently synthesizing garment deformation sequences corresponding to the generated human motions while maintaining temporal and spatial *** verify our ideas *** is the first generative model that directly dresses human animation.
Generating novel molecules to satisfy specific properties is a challenging task in modern drug discovery,which requires the optimization of a specific objective based on satisfying chemical ***,we aim to optimize the ...
详细信息
Generating novel molecules to satisfy specific properties is a challenging task in modern drug discovery,which requires the optimization of a specific objective based on satisfying chemical ***,we aim to optimize the properties of a specific molecule to satisfy the specific properties of the generated *** Matched Molecular Pairs(MMPs),which contain the source and target molecules,are used herein,and logD and solubility are selected as the optimization *** main innovative work lies in the calculation related to a specific transformer from the perspective of a matrix *** intervals and state changes are then used to encode logD and solubility for subsequent *** the experiments,we screen the data based on the proportion of heavy atoms to all atoms in the groups and select 12365,1503,and 1570 MMPs as the training,validation,and test sets,*** models are compared with the baseline models with respect to their abilities to generate molecules with specific *** show that the transformer model can accurately optimize the source molecules to satisfy specific properties.
This letter presents a human-to-robot handover design for an Autonomous Mobile Robot (AMR). The developed control system enables the AMR to navigate to a specific person and grasp the object that the person wants to h...
详细信息
This article introduces a novel model for low-quality pedestrian trajectory prediction, the social nonstationary transformers (NSTransformers), that merges the strengths of NSTransformers and spatiotemporal graph tran...
详细信息
暂无评论