咨询与建议

限定检索结果

文献类型

  • 213 篇 期刊文献
  • 119 篇 会议
  • 1 册 图书

馆藏范围

  • 333 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 207 篇 工学
    • 126 篇 计算机科学与技术...
    • 87 篇 软件工程
    • 60 篇 信息与通信工程
    • 40 篇 电子科学与技术(可...
    • 35 篇 光学工程
    • 27 篇 电气工程
    • 18 篇 控制科学与工程
    • 17 篇 生物工程
    • 11 篇 仪器科学与技术
    • 10 篇 材料科学与工程(可...
    • 10 篇 动力工程及工程热...
    • 9 篇 生物医学工程(可授...
    • 8 篇 机械工程
    • 8 篇 化学工程与技术
    • 6 篇 土木工程
    • 5 篇 力学(可授工学、理...
  • 168 篇 理学
    • 87 篇 物理学
    • 67 篇 数学
    • 28 篇 统计学(可授理学、...
    • 22 篇 生物学
    • 11 篇 化学
    • 9 篇 系统科学
    • 7 篇 天文学
  • 35 篇 管理学
    • 20 篇 管理科学与工程(可...
    • 16 篇 图书情报与档案管...
    • 10 篇 工商管理
  • 10 篇 医学
    • 10 篇 临床医学
    • 8 篇 基础医学(可授医学...
    • 5 篇 公共卫生与预防医...
  • 5 篇 农学
  • 4 篇 法学
  • 3 篇 教育学
  • 2 篇 经济学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 12 篇 quantum algorith...
  • 10 篇 qubits
  • 8 篇 machine learning
  • 7 篇 quantum computat...
  • 6 篇 computer science
  • 6 篇 conferences
  • 5 篇 quantum simulati...
  • 5 篇 deep neural netw...
  • 5 篇 signal processin...
  • 5 篇 quantum error co...
  • 5 篇 quantum computer...
  • 5 篇 quantum gates
  • 4 篇 data mining
  • 4 篇 switches
  • 4 篇 atoms
  • 4 篇 stochastic syste...
  • 4 篇 complexity theor...
  • 4 篇 hardware
  • 4 篇 data structures
  • 4 篇 synchronization

机构

  • 37 篇 ntt computer and...
  • 32 篇 ntt computer and...
  • 17 篇 ntt computer and...
  • 16 篇 jst presto 4-1-8...
  • 15 篇 purple mountain ...
  • 13 篇 jst presto 4-1-8...
  • 12 篇 ntt communicatio...
  • 11 篇 the purple mount...
  • 11 篇 the department o...
  • 9 篇 school of scienc...
  • 8 篇 graduate school ...
  • 7 篇 sony computer sc...
  • 7 篇 department of ap...
  • 7 篇 computer and dat...
  • 6 篇 royal stoke univ...
  • 6 篇 cambridge univer...
  • 6 篇 graduate school ...
  • 6 篇 the national mob...
  • 5 篇 leeds institute ...
  • 5 篇 center for psych...

作者

  • 26 篇 suzuki yasunari
  • 20 篇 tokunaga yuuki
  • 20 篇 endo suguru
  • 16 篇 zhang rui
  • 15 篇 zeng yong
  • 14 篇 kumagai atsutosh...
  • 13 篇 yuuki tokunaga
  • 12 篇 nielsen frank
  • 12 篇 jin shi
  • 11 篇 yasunari suzuki
  • 11 篇 matsuzaki yuichi...
  • 10 篇 suguru endo
  • 8 篇 fujiwara yasuhir...
  • 8 篇 ryo masumura
  • 8 篇 shinobu saito
  • 7 篇 hakoshima hideak...
  • 7 篇 chijiwa daiki
  • 7 篇 yoshioka nobuyuk...
  • 7 篇 masumura ryo
  • 7 篇 asaoka rui

语言

  • 308 篇 英文
  • 25 篇 其他
  • 1 篇 日文
检索条件"机构=Computer and Data Science Laboratories"
333 条 记 录,以下是11-20 订阅
排序:
Next-Speaker Prediction Based on Non-Verbal Information in Multi-Party Video Conversation  48
Next-Speaker Prediction Based on Non-Verbal Information in M...
收藏 引用
48th IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2023
作者: Mizuno, Saki Hojo, Nobukatsu Kobashikawa, Satoshi Masumura, Ryo Ntt Computer & Data Science Laboratories
We propose a method for next-speaker prediction, a task to predict who speaks in the next turn among multiple current listeners, in multi-party video conversation. Previous studies used non-verbal features, such as he... 详细信息
来源: 评论
Recurrent Neural Networks for Learning Long-term Temporal Dependencies with Reanalysis of Time Scale Representation  12
Recurrent Neural Networks for Learning Long-term Temporal De...
收藏 引用
12th IEEE International Conference on Big Knowledge, ICBK 2021
作者: Ohno, Kentaro Kumagai, Atsutoshi NTT Computer Data Science Laboratories Japan
Recurrent neural networks with a gating mechanism such as an LSTM or GRU are powerful tools to model sequential data. In the mechanism, a forget gate, which was introduced to control information flow in a hidden state... 详细信息
来源: 评论
Logical entanglement distribution between distant 2D array qubits
arXiv
收藏 引用
arXiv 2025年
作者: Maeda, Yuya Suzuki, Yasunari Kobayashi, Toshiki Yamamoto, Takashi Tokunaga, Yuuki Fujii, Keisuke Graduate School of Engineering Science Osaka University 1-3 Machikaneyama Toyonaka Osaka560-8531 Japan NTT Computer and Data Science Laboratories NTT Corporation Musashino180-8585 Japan JST PRESTO 4-1-8 Honcho Kawaguchi Saitama332-0012 Japan Center for Quantum Information and Quantum Biology Institute for Open and Transdisciplinary Research Initiatives Osaka University Japan Center for Quantum Computing RIKEN Wako Saitama351-0198 Japan
Sharing logical entangled pairs between distant quantum nodes is a key process to achieve fault-tolerant quantum computation and communication. However, there is a gap between current experimental specifications and t... 详细信息
来源: 评论
Fast Iterative Hard Thresholding Methods with Pruning Gradient Computations  38
Fast Iterative Hard Thresholding Methods with Pruning Gradie...
收藏 引用
38th Conference on Neural Information Processing Systems, NeurIPS 2024
作者: Ida, Yasutoshi Kanai, Sekitoshi Kumagai, Atsutoshi Iwata, Tomoharu Fujiwara, Yasuhiro NTT Computer and Data Science Laboratories Japan NTT Communication Science Laboratories Japan
We accelerate the iterative hard thresholding (IHT) method, which finds k important elements from a parameter vector in a linear regression model. Although the plain IHT repeatedly updates the parameter vector during ...
来源: 评论
Towards N-version Quantum Software Systems for Reliable Classical-Quantum Computing  35
Towards N-version Quantum Software Systems for Reliable Clas...
收藏 引用
35th IEEE International Symposium on Software Reliability Engineering Workshops, ISSREW 2024
作者: Saito, Shinobu Endo, Suguru Suzuki, Yasunari Ntt Computer and Data Science Laboratories Tokyo Japan
While quantum computers have attracted much attention, dealing with computational errors due to noise effects caused by the interaction between quantum hardware and the external environment is a significant challenge.... 详细信息
来源: 评论
Learning Robust Convolutional Neural Networks with Relevant Feature Focusing Via Explanations
Learning Robust Convolutional Neural Networks with Relevant ...
收藏 引用
2022 IEEE International Conference on Multimedia and Expo, ICME 2022
作者: Adachi, Kazuki Yamaguchi, Shin'ya Ntt Corporation Computer and Data Science Laboratories Japan
Existing image recognition techniques based on convolutional neural networks (CNNs) basically assume that the training and test datasets are sampled from i.i.d distributions. However, this assumption is easily broken ... 详细信息
来源: 评论
TRANSFERRING LEARNING TRAJECTORIES OF NEURAL NETWORKS  12
TRANSFERRING LEARNING TRAJECTORIES OF NEURAL NETWORKS
收藏 引用
12th International Conference on Learning Representations, ICLR 2024
作者: Chijiwa, Daiki NTT Computer and Data Science Laboratories NTT Corporation Japan
Training deep neural networks (DNNs) is computationally expensive, which is problematic especially when performing duplicated or similar training runs in model ensemble or fine-tuning pre-trained models, for example. ... 详细信息
来源: 评论
Text-to-Text Pre-Training with Paraphrasing for Improving Transformer-based Image Captioning  31
Text-to-Text Pre-Training with Paraphrasing for Improving Tr...
收藏 引用
31st European Signal Processing Conference, EUSIPCO 2023
作者: Masumura, Ryo Makishima, Naoki Ihori, Mana Takashima, Akihiko Tanaka, Tomohiro Orihashi, Shota NTT Computer Data Science Laboratories NTT Corporation Japan
In this paper, we propose a novel training method for the transformer encoder-decoder based image captioning, which directly generates a captioning text from an input image. In general, many image-to-text paired datas... 详细信息
来源: 评论
Deep Quantigraphic Image Enhancement via Comparametric Equations  48
Deep Quantigraphic Image Enhancement via Comparametric Equat...
收藏 引用
48th IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2023
作者: Wu, Xiaomeng Sun, Yongqing Kimura, Akisato Ntt Corporation Communication Science Laboratories Japan Ntt Corporation Computer and Data Science Laboratories Japan
Most recent methods of deep image enhancement can be generally classified into two types: decompose-and-enhance and illumination estimation-centric. The former is usually less efficient, and the latter is constrained ... 详细信息
来源: 评论
Toward data Efficient Model Merging between Different datasets without Performance Degradation  16
Toward Data Efficient Model Merging between Different Datase...
收藏 引用
16th Asian Conference on Machine Learning, ACML 2024
作者: Yamada, Masanori Yamashita, Tomoya Yamaguchi, Shin’ya Chijiwa, Daiki NTT Social Informatics Laboratories Japan NTT Computer and Data Science Laboratories Japan
Model merging is attracting attention as a novel method for creating a new model by combining the weights of different trained models. While previous studies reported that model merging works well for models trained o... 详细信息
来源: 评论