High-dimensional and incomplete(HDI) matrices are primarily generated in all kinds of big-data-related practical applications. A latent factor analysis(LFA) model is capable of conducting efficient representation lear...
详细信息
High-dimensional and incomplete(HDI) matrices are primarily generated in all kinds of big-data-related practical applications. A latent factor analysis(LFA) model is capable of conducting efficient representation learning to an HDI matrix,whose hyper-parameter adaptation can be implemented through a particle swarm optimizer(PSO) to meet scalable ***, conventional PSO is limited by its premature issues,which leads to the accuracy loss of a resultant LFA model. To address this thorny issue, this study merges the information of each particle's state migration into its evolution process following the principle of a generalized momentum method for improving its search ability, thereby building a state-migration particle swarm optimizer(SPSO), whose theoretical convergence is rigorously proved in this study. It is then incorporated into an LFA model for implementing efficient hyper-parameter adaptation without accuracy loss. Experiments on six HDI matrices indicate that an SPSO-incorporated LFA model outperforms state-of-the-art LFA models in terms of prediction accuracy for missing data of an HDI matrix with competitive computational ***, SPSO's use ensures efficient and reliable hyper-parameter adaptation in an LFA model, thus ensuring practicality and accurate representation learning for HDI matrices.
This study introduces CLIP-Flow,a novel network for generating images from a given image or *** effectively utilize the rich semantics contained in both modalities,we designed a semantics-guided methodology for image-...
详细信息
This study introduces CLIP-Flow,a novel network for generating images from a given image or *** effectively utilize the rich semantics contained in both modalities,we designed a semantics-guided methodology for image-and text-to-image *** particular,we adopted Contrastive Language-Image Pretraining(CLIP)as an encoder to extract semantics and StyleGAN as a decoder to generate images from such ***,to bridge the embedding space of CLIP and latent space of StyleGAN,real NVP is employed and modified with activation normalization and invertible *** the images and text in CLIP share the same representation space,text prompts can be fed directly into CLIP-Flow to achieve text-to-image *** conducted extensive experiments on several datasets to validate the effectiveness of the proposed image-to-image synthesis *** addition,we tested on the public dataset Multi-Modal CelebA-HQ,for text-to-image *** validated that our approach can generate high-quality text-matching images,and is comparable with state-of-the-art methods,both qualitatively and quantitatively.
Perovskite solar cells have shown great potential in the field of underwater solar cells due to their excellent optoelectronic properties;however,their underwater performance and stability still hinder their practical...
详细信息
Perovskite solar cells have shown great potential in the field of underwater solar cells due to their excellent optoelectronic properties;however,their underwater performance and stability still hinder their practical *** this research,a 1H,1H,2H,2H-heptadecafluorodecyl acrylate(HFDA)anti-reflection coating(ARC)was introduced as a high-transparent material for encapsulating perovskite solar modules(PSMs).Optical characterization results revealed that HFDA can effectively reduce reflection of light below 800 nm,aiding in the absorption of light within this wavelength range by underwater solar ***,a remarkable efficiency of 14.65%was achieved even at a water depth of 50 ***,the concentration of Pb^(2+)for HFDA-encapsulated film is significantly reduced from 186 to 16.5 ppb after being immersed in water for 347 ***,the encapsulated PSMs still remained above 80%of their initial efficiency after continuous underwater illumination for 400 ***,being exposed to air,the encapsulated PSMs maintained 94%of their original efficiency after 1000 h light *** highly transparent ARC shows great potentials in enhancing the stability of perovskite devices,applicable not only to underwater cells but also extendable to land-based photovoltaic devices.
Exemplar-based image translation involves converting semantic masks into photorealistic images that adopt the style of a given ***,most existing GAN-based translation methods fail to produce photorealistic *** this st...
详细信息
Exemplar-based image translation involves converting semantic masks into photorealistic images that adopt the style of a given ***,most existing GAN-based translation methods fail to produce photorealistic *** this study,we propose a new diffusion model-based approach for generating high-quality images that are semantically aligned with the input mask and resemble an exemplar in *** proposed method trains a conditional denoising diffusion probabilistic model(DDPM)with a SPADE module to integrate the semantic *** then used a novel contextual loss and auxiliary color loss to guide the optimization process,resulting in images that were visually pleasing and semantically *** demonstrate that our method outperforms state-of-the-art approaches in terms of both visual quality and quantitative metrics.
Carbon neutrality has become an important design objective worldwide. However, the on-going shift to cloud-naive era does not necessarily mean energy efficiency. From the perspective of power management, co-hosted ser...
详细信息
Carbon neutrality has become an important design objective worldwide. However, the on-going shift to cloud-naive era does not necessarily mean energy efficiency. From the perspective of power management, co-hosted serverless functions are difficult to tame. They are lightweight, short-lived applications sensitive to power capping activities. In addition, they exhibit great individual and temporal variability, presenting idiosyncratic performance/power scaling goals that are often at odds with one another. To date, very few proposals exist in terms of tailored power management for serverless platforms. In this work, we introduce power synchronization, a novel yet generic mechanism for managing serverless functions in a power-efficient way. Our insight with power synchronization is that uniform application power behavior enables consistent and uncompromised function operation on shared host machines. We also propose PowerSync, a synchronization-based power management framework that ensures optimal efficiency based on a clear understanding of functions. Our evaluation shows that PowerSync can improve the energy efficiency of functions by up to 16% without performance loss compared to conventional power management strategies.
Cloud computing provides a diverse and adaptable resource pool over the internet,allowing users to tap into various resources as *** has been seen as a robust solution to relevant challenges.A significant delay can ha...
详细信息
Cloud computing provides a diverse and adaptable resource pool over the internet,allowing users to tap into various resources as *** has been seen as a robust solution to relevant challenges.A significant delay can hamper the performance of IoT-enabled cloud ***,efficient task scheduling can lower the cloud infrastructure’s energy consumption,thus maximizing the service provider’s revenue by decreasing user job processing *** proposed Modified Chimp-Whale Optimization Algorithm called Modified Chimp-Whale Optimization Algorithm(MCWOA),combines elements of the Chimp Optimization Algorithm(COA)and the Whale Optimization Algorithm(WOA).To enhance MCWOA’s identification precision,the Sobol sequence is used in the population initialization phase,ensuring an even distribution of the population across the solution ***,the traditional MCWOA’s local search capabilities are augmented by incorporating the whale optimization algorithm’s bubble-net hunting and random search mechanisms into MCWOA’s position-updating *** study demonstrates the effectiveness of the proposed approach using a two-story rigid frame and a simply supported beam *** outcomes reveal that the new method outperforms the original MCWOA,especially in multi-damage detection *** excels in avoiding false positives and enhancing computational speed,making it an optimal choice for structural damage *** efficiency of the proposed MCWOA is assessed against metrics such as energy usage,computational expense,task duration,and *** simulated data indicates that the new MCWOA outpaces other methods across all *** study also references the Whale Optimization Algorithm(WOA),Chimp Algorithm(CA),Ant Lion Optimizer(ALO),Genetic Algorithm(GA)and Grey Wolf Optimizer(GWO).
The most widely farmed fruit in the world is *** the production and quality of the mangoes are hampered by many *** diseases need to be effectively controlled and ***,a quick and accurate diagnosis of the disorders is...
详细信息
The most widely farmed fruit in the world is *** the production and quality of the mangoes are hampered by many *** diseases need to be effectively controlled and ***,a quick and accurate diagnosis of the disorders is *** convolutional neural networks,renowned for their independence in feature extraction,have established their value in numerous detection and classification ***,it requires large training datasets and several parameters that need careful *** proposed Modified Dense Convolutional Network(MDCN)provides a successful classification scheme for plant diseases affecting mango *** model employs the strength of pre-trained networks and modifies them for the particular context of mango leaf diseases by incorporating transfer learning *** data loader also builds mini-batches for training the models to reduce training ***,optimization approaches help increase the overall model’s efficiency and lower computing *** employed on the MangoLeafBD Dataset consists of a total of 4,000 *** the experimental results,the proposed system is compared with existing techniques and it is clear that the proposed algorithm surpasses the existing algorithms by achieving high performance and overall throughput.
Heart monitoring improves life ***(ECGs or EKGs)detect heart *** learning algorithms can create a few ECG diagnosis processing *** first method uses raw ECG and time-series *** second method classifies the ECG by pati...
详细信息
Heart monitoring improves life ***(ECGs or EKGs)detect heart *** learning algorithms can create a few ECG diagnosis processing *** first method uses raw ECG and time-series *** second method classifies the ECG by patient *** third technique translates ECG impulses into Q waves,R waves and S waves(QRS)features using richer *** ECG signals vary naturally between humans and activities,we will combine the three feature selection methods to improve classification accuracy and *** using all three approaches have not been examined till *** researchers found that Machine Learning(ML)techniques can improve ECG *** study will compare popular machine learning techniques to evaluate ECG *** algorithms—Support Vector Machine(SVM),Decision Tree,Naive Bayes,and Neural Network—compare categorization *** plus prior knowledge has the highest accuracy(99%)of the four ML *** characteristics failed to identify signals without chaos *** 99.8%classification accuracy,the Decision Tree technique outperformed all previous experiments.
Heterogeneous crowd operations involve complex procedural subtasks performed by dynamic teams with diverse agent behaviors,tailored to specific task *** of such operations include carrier aircraft support,airport grou...
Heterogeneous crowd operations involve complex procedural subtasks performed by dynamic teams with diverse agent behaviors,tailored to specific task *** of such operations include carrier aircraft support,airport ground handling,and logistics *** a hybrid virtual-physical digital twin testbed for scenario generation and plan verification in heterogeneous crowd operations addresses the issues of low credibility in virtual simulations and the high costs associated with real-world *** is becoming increasingly important in practical applications.
The exercise recommendation system is emerging as a promising application in online learning scenarios,providing personalized recommendations to assist students with explicit learning *** solutions generally follow a ...
详细信息
The exercise recommendation system is emerging as a promising application in online learning scenarios,providing personalized recommendations to assist students with explicit learning *** solutions generally follow a collaborative filtering paradigm,while the implicit connections between students(exercises)have been largely *** this study,we aim to propose an exercise recommendation paradigm that can reveal the latent connections between student-student(exercise-exercise).Specifically,a new framework was proposed,namely personalized exercise recommendation with student and exercise portraits(PERP).It consists of three sequential and interdependent modules:Collaborative student exercise graph(CSEG)construction,joint random walk,and recommendation list ***,CSEG is created as a unified heterogeneous graph with students’response behaviors and student(exercise)***,a joint random walk to take full advantage of the spectral properties of nearly uncoupled Markov chains is performed on CSEG,which allows for full exploration of both similar exercises that students have finished and connections between students(exercises)with similar ***,we propose to optimize the recommendation list to obtain different exercise *** analyses of two public datasets,the results demonstrated that PERP can satisfy novelty,accuracy,and diversity.
暂无评论