Recently,nano-systems based on molecular communications via diffusion(MCvD)have been implemented in a variety of nanomedical applications,most notably in targeted drug delivery system(TDDS)***,because the MCvD is unre...
详细信息
Recently,nano-systems based on molecular communications via diffusion(MCvD)have been implemented in a variety of nanomedical applications,most notably in targeted drug delivery system(TDDS)***,because the MCvD is unreliable and there exists molecular noise and inter symbol interference(ISI),cooperative nano-relays can acquire the reliability for drug delivery to targeted diseased cells,especially if the separation distance between the nano transmitter and nano receiver is *** this work,we propose an approach for optimizing the performance of the nano system using cooperative molecular communications with a nano relay scheme,while accounting for blood flow effects in terms of drift *** fractions of the molecular drug that should be allocated to the nano transmitter and nano relay positioning are computed using a collaborative optimization problem solved by theModified Central Force Optimization(MCFO)*** the previous work,the probability of bit error is expressed in a closed-form *** is used as an objective function to determine the optimal velocity of the drug molecules and the detection threshold at the nano *** simulation results show that the probability of bit error can be dramatically reduced by optimizing the drift velocity,detection threshold,location of the nano-relay in the proposed nano system,and molecular drug budget.
This paper presents a simulation study on integrating grid-connected photovoltaic (PV) systems with a potential to implement battery storage in residential settings. It analyses the performance and feasibility of such...
详细信息
In the dynamic landscape of online social networks, recognizing sensitive content is essential for safeguarding user privacy, fostering inclusivity, and enhancing diversity awareness. Building on prior research, this ...
详细信息
In this paper, we propose a method of fundamental solution for two-dimensional doubly periodic problems, especially potential flow problems with a doubly periodic array of obstacles. In the proposed method, we approxi...
详细信息
This paper considers similarities between statistical physics and Bayes inference through the Bayesian linear regression model. Some similarities have been discussed previously, such as the analogy between the margina...
详细信息
This paper considers similarities between statistical physics and Bayes inference through the Bayesian linear regression model. Some similarities have been discussed previously, such as the analogy between the marginal likelihood in Bayes inference and the partition function in statistical mechanics. In particular, this paper considers the proposal to associate discrete sample size with inverse temperature [C. H. LaMont and P. A. Wiggins, Phys. Rev. E 99, 052140 (2019)]. The previous study suggested that incorporating this similarity motivates the derivation of analogs of thermodynamic functions such as energy and entropy. The study also anticipated that those analogous functions have potential to describe Bayes estimation from physical points of view and to provide physical insights into mechanisms of estimation. This paper incorporates a macroscopic perspective as an asymptotics similar to the thermodynamic limit into the previous suggestion. Its motivation stems from the statistical mechanical concept of deriving thermodynamic functions that characterize macroscopic properties of macroscopic systems. This incorporation not only allows analogs of macroscopic thermodynamic functions to be considered but also suggests a candidate for an analog of inverse temperature with continuity, which is partly consistent with the previous proposal to associate the discrete sample size with inverse temperature. On the basis of this suggestion, we analyze analogs of macroscopic thermodynamic functions for a Bayesian linear regression model which is the basis of various machine learning models. We further investigate, through the behavior of these functions, how Bayes estimation is described from the perspective of physics and what kind of physical insight is obtained. As a result, the estimation of regression coefficients, which is the primary task of regression, appears to be described by the physical picture of balance between decreasing energy and increasing entropy as in equi
Benefited from their flexibility and on-demand deployment capability, unmanned aerial vehicles (UAVs) have emerged as critical aerial communication platforms in future Internet of Vehicles (IoV). However, limited spec...
详细信息
Accurately predicting the Remaining Useful Life(RUL)of lithium-ion batteries is crucial for battery management *** learning-based methods have been shown to be effective in predicting RUL by leveraging battery capacit...
详细信息
Accurately predicting the Remaining Useful Life(RUL)of lithium-ion batteries is crucial for battery management *** learning-based methods have been shown to be effective in predicting RUL by leveraging battery capacity time series ***,the representation learning of features such as long-distance sequence dependencies and mutations in capacity time series still needs to be *** address this challenge,this paper proposes a novel deep learning model,the MLP-Mixer and Mixture of Expert(MMMe)model,for RUL *** MMMe model leverages the Gated Recurrent Unit and Multi-Head Attention mechanism to encode the sequential data of battery capacity to capture the temporal features and a re-zero MLP-Mixer model to capture the high-level ***,we devise an ensemble predictor based on a Mixture-of-Experts(MoE)architecture to generate reliable RUL *** experimental results on public datasets demonstrate that our proposed model significantly outperforms other existing methods,providing more reliable and precise RUL predictions while also accurately tracking the capacity degradation *** code and dataset are available at the website of github.
The exchange of knowledge is widely recognized as a crucial aspect of effective knowledge management. When it comes to sharing knowledge within Prison settings, things get complicated due to various challenges such as...
详细信息
暂无评论