The IEEE802.15.4 standard has been widely used in modern industry due to its several benefits for stability,scalability,and enhancement of wireless mesh *** standard uses a physical layer of binary phase-shift keying(...
详细信息
The IEEE802.15.4 standard has been widely used in modern industry due to its several benefits for stability,scalability,and enhancement of wireless mesh *** standard uses a physical layer of binary phase-shift keying(BPSK)modulation and can be operated with two frequency bands,868 and 915 *** frequency noise could interfere with the BPSK signal,which causes distortion to the signal before its arrival at ***,filtering the BPSK signal from noise is essential to ensure carrying the signal from the sen-der to the receiver with less ***,removing signal noise in the BPSK signal is necessary to mitigate its negative sequences and increase its capability in industrial wireless sensor ***,researchers have reported a posi-tive impact of utilizing the Kalmen filter in detecting the modulated signal at the receiver side in different communication systems,including ***-while,artificial neural network(ANN)and machine learning(ML)models outper-formed results for predicting signals for detection and classification *** paper develops a neural network predictive detection method to enhance the performance of BPSK ***,a simulation-based model is used to generate the modulated signal of BPSK in the IEEE802.15.4 wireless personal area network(WPAN)***,Gaussian noise was injected into the BPSK simulation *** reduce the noise of BPSK phase signals,a recurrent neural networks(RNN)model is implemented and integrated at the receiver side to esti-mate the BPSK’s phase *** evaluated our predictive-detection RNN model using mean square error(MSE),correlation coefficient,recall,and F1-score *** result shows that our predictive-detection method is superior to the existing model due to the low MSE and correlation coefficient(R-value)metric for different signal-to-noise(SNR)*** addition,our RNN-based model scored 98.71%and 96.34%based on recall and F1-score,respectively.
From AI-assisted art creation to large language model (LLM)-powered ChatGPT, AI-generated contents and services are becoming a transforming force. It calls for the telecom industry to embrace the prospects of AIGC ser...
详细信息
In order to forecast the run time of the jobs that were submitted, this research provides two linear regression prediction models that include continuous and categorical factors. A continuous predictor is built using ...
详细信息
Parkinson’s disease (PD) disorder is caused by the imbalance of inhibitory dopamine and excitatory acetylcholine neurotransmitters, which causes hindrance in locomotion. Freezing of gait (FOG), tremors, and bradykine...
详细信息
we introduced image encryption algorithms with high sensitivity, such that even a single alteration in a plain-text image would result in a complete transformation of the ciphered image. The first algorithm employed p...
详细信息
This paper investigated the predictive capabilities of three decision tree models for IoT botnet attack prediction using packet information while minimizing the number of predictors. The study employed three decision ...
详细信息
A brain tumor is a mass or growth of abnormal cells in the *** children and adults,brain tumor is considered one of the leading causes of *** are several types of brain tumors,including benign(non-cancerous)and malign...
详细信息
A brain tumor is a mass or growth of abnormal cells in the *** children and adults,brain tumor is considered one of the leading causes of *** are several types of brain tumors,including benign(non-cancerous)and malignant(cancerous)*** brain tumors as early as possible is essential,as this can improve the chances of successful treatment and *** this problem,we bring forth a hybrid intelligent deep learning technique that uses several pre-trained models(Resnet50,Vgg16,Vgg19,U-Net)and their integration for computer-aided detection and localization systems in brain *** pre-trained and integrated deep learning models have been used on the publicly available dataset from The Cancer Genome *** dataset consists of 120 *** pre-trained models have been used to classify tumor or no tumor images,while integrated models are applied to segment the tumor region *** have evaluated their performance in terms of loss,accuracy,intersection over union,Jaccard distance,dice coefficient,and dice coefficient *** pre-trained models,the U-Net model achieves higher performance than other models by obtaining 95%*** contrast,U-Net with ResNet-50 out-performs all other models from integrated pre-trained models and correctly classified and segmented the tumor region.
Emotion Recognition in Conversations(ERC)is fundamental in creating emotionally ***-BasedNetwork(GBN)models have gained popularity in detecting conversational contexts for ERC ***,their limited ability to collect and ...
详细信息
Emotion Recognition in Conversations(ERC)is fundamental in creating emotionally ***-BasedNetwork(GBN)models have gained popularity in detecting conversational contexts for ERC ***,their limited ability to collect and acquire contextual information hinders their *** propose a Text Augmentation-based computational model for recognizing emotions using transformers(TA-MERT)to address *** proposed model uses the Multimodal Emotion Lines Dataset(MELD),which ensures a balanced representation for recognizing human *** used text augmentation techniques to producemore training data,improving the proposed model’s *** encoders train the deep neural network(DNN)model,especially Bidirectional Encoder(BE)representations that capture both forward and backward contextual *** integration improves the accuracy and robustness of the proposed ***,we present a method for balancing the training dataset by creating enhanced samples from the original *** balancing the dataset across all emotion categories,we can lessen the adverse effects of data imbalance on the accuracy of the proposed *** results on the MELD dataset show that TA-MERT outperforms earlier methods,achieving a weighted F1 score of 62.60%and an accuracy of 64.36%.Overall,the proposed TA-MERT model solves the GBN models’weaknesses in obtaining contextual data for ***-MERT model recognizes human emotions more accurately by employing text augmentation and transformer-based *** balanced dataset and the additional training samples also enhance its *** findings highlight the significance of transformer-based approaches for special emotion recognition in conversations.
Originally, protocols were designed for multi-agent systems (MAS) using information about the network which might not be available. Recently, there has been a focus on scale-free synchronization where the protocol is ...
详细信息
The proposed study focuses on the critical issue of corrosion,which leads to significant economic losses and safety risks worldwide.A key area of emphasis is the accuracy of corrosion detection *** recent studies have...
详细信息
The proposed study focuses on the critical issue of corrosion,which leads to significant economic losses and safety risks worldwide.A key area of emphasis is the accuracy of corrosion detection *** recent studies have made progress,a common challenge is the low accuracy of existing detection *** models often struggle to reliably identify corrosion tendencies,which are crucial for minimizing industrial risks and optimizing resource *** proposed study introduces an innovative approach that significantly improves the accuracy of corrosion detection using a convolutional neural network(CNN),as well as two pretrained models,namely YOLOv8 and *** leveraging advanced technologies and methodologies,we have achieved high accuracies in identifying and managing the hazards associated with corrosion across various industrial *** advancement not only supports the overarching goals of enhancing safety and efficiency,but also sets a new benchmark for future research in the *** results demonstrate a significant improvement in the ability to detect and mitigate corrosion-related concerns,providing a more accurate and comprehensive solution for industries facing these *** CNN and EfficientNetB0 exhibited 100%accuracy,precision,recall,and F1-score,followed by YOLOv8 with respective metrics of 95%,100%,90%,and 94.74%.Our approach outperformed state-of-the-art with similar datasets and methodologies.
暂无评论