The recent Internet of Things (IoT) adoption has revolutionized various applications while introducing significant security and privacy challenges. Traditional security solutions are unsuitable for IoT systems due to ...
详细信息
Forest fires pose a serious threat to ecological balance, air quality, and the safety of both humans and wildlife. This paper presents an improved model based on You Only Look Once version 5 (YOLOv5), named YOLO Light...
详细信息
Forest fires pose a serious threat to ecological balance, air quality, and the safety of both humans and wildlife. This paper presents an improved model based on You Only Look Once version 5 (YOLOv5), named YOLO Lightweight Fire Detector (YOLO-LFD), to address the limitations of traditional sensor-based fire detection methods in terms of real-time performance and accuracy. The proposed model is designed to enhance inference speed while maintaining high detection accuracy on resource-constrained devices such as drones and embedded systems. Firstly, we introduce Depthwise Separable Convolutions (DSConv) to reduce the complexity of the feature extraction network. Secondly, we design and implement the Lightweight Faster Implementation of Cross Stage Partial (CSP) Bottleneck with 2 Convolutions (C2f-Light) and the CSP Structure with 3 Compact Inverted Blocks (C3CIB) modules to replace the traditional C3 modules. This optimization enhances deep feature extraction and semantic information processing, thereby significantly increasing inference speed. To enhance the detection capability for small fires, the model employs a Normalized Wasserstein Distance (NWD) loss function, which effectively reduces the missed detection rate and improves the accuracy of detecting small fire sources. Experimental results demonstrate that compared to the baseline YOLOv5s model, the YOLO-LFD model not only increases inference speed by 19.3% but also significantly improves the detection accuracy for small fire targets, with only a 1.6% reduction in overall mean average precision (mAP)@0.5. Through these innovative improvements to YOLOv5s, the YOLO-LFD model achieves a balance between speed and accuracy, making it particularly suitable for real-time detection tasks on mobile and embedded devices.
Machine learning (ML) with data analysis has many successful applications and is widely employed daily. Additionally, they have played a significant role in combating the global coronavirus (COVID-19) outbreak. Intern...
详细信息
In recent years, deep learning-based synthetic aperture radar (SAR) image detection, recognition, and segmentation models achieve remarkable accuracy when trained on large amounts of SAR image samples. However, the ac...
详细信息
Machine learning algorithms face important implementation difficulties due to imbalanced learning since the Synthetic Minority Oversampling Technique (SMOTE) helps improve performance through the creation of new minor...
详细信息
Desertification greatly affects land deterioration, farming efficiency, economic growth, and health, especially in Gulf nations. Climate change has worsened desertification, making developmental issues in the area eve...
详细信息
Desertification greatly affects land deterioration, farming efficiency, economic growth, and health, especially in Gulf nations. Climate change has worsened desertification, making developmental issues in the area even more difficult. This research presents an enhanced framework utilizing the Internet of Things (IoT) for ongoing monitoring, data gathering, and analysis to evaluate desertification patterns. The framework utilizes Bayesian Belief Networks (BBN) to categorize IoT data, while a low-latency processing method on edge computing platforms enables effective detection of desertification trends. The classified data is subsequently analyzed using an Artificial Neural Network (ANN) optimized with a Genetic Algorithm (GA) for forecasting decisions. Using cloud computing infrastructure, the ANN-GA model examines intricate data connections to forecast desertification risk elements. Moreover, the Autoregressive Integrated Moving Average (ARIMA) model is employed to predict desertification over varied time intervals. Experimental simulations illustrate the effectiveness of the suggested framework, attaining enhanced performance in essential metrics: Temporal Delay (103.68 s), Classification Efficacy—Sensitivity (96.44 %), Precision (95.56 %), Specificity (96.97 %), and F-Measure (96.69 %)—Predictive Efficiency—Accuracy (97.76 %) and Root Mean Square Error (RMSE) (1.95 %)—along with Reliability (93.73 %) and Stability (75 %). The results of classification effectiveness and prediction performance emphasize the framework's ability to detect high-risk zones and predict the severity of desertification. This innovative method improves the comprehension of desertification processes and encourages sustainable land management practices, reducing the socio-economic impacts of desertification and bolstering at-risk ecosystems. The results of the study hold considerable importance for enhancing regional efforts in combating desertification, ensuring food security, and formulatin
Deep neural networks have succeeded in learning balanced and imbalanced data in the field of pneumonia diagnosis. However, both require separate model designs in their respective domains. The pneumonia recognition met...
详细信息
The rapid advancement of artificial intelligence (AI) in generating human-like text poses significant challenges in distinguishing between human-written and AI-generated content. Recent advancements in natural languag...
详细信息
Designing anomaly detection systems for vehicle-to-everything (V2X) is a challenge. Deep learning has shown strong advantages in anomaly detection. However, labeling anomalies is often difficult and expensive, and dee...
详细信息
With the continuous advancement of satellite technology, remote sensing images has been increasingly applied in fields such as urban planning, environmental monitoring, and disaster response. However, remote sensing i...
详细信息
With the continuous advancement of satellite technology, remote sensing images has been increasingly applied in fields such as urban planning, environmental monitoring, and disaster response. However, remote sensing images often feature small target sizes and complex backgrounds, posing significant computational challenges for object detection tasks. To address this issue, this paper proposes a lightweight remote sensing images object detection algorithm based on YOLOv9. The proposed algorithm incorporates the SimRMB module, which effectively reduces computational complexity while improving the efficiency and accuracy of feature extraction. Through a dynamic attention mechanism, SimRMB is capable of focusing on important regions while minimizing background interference, and by integrating residual learning and skip connections, it ensures the stability of deep networks. To further enhance detection performance, the FasterRepNCSPELAN4 module is introduced, which employs PConv operations to reduce computational load and memory usage. It also utilizes dilated convolutions and DFC attention mechanisms to strengthen feature extraction, thereby increasing the efficiency and accuracy of object detection. Additionally, this study integrates the GhostModuleV2 module, which generates core feature maps and employs lightweight operations to create redundant features, greatly reducing the computational complexity of *** results show that on the SIMD dataset, the improved YOLOv9 model has a parameter size of 167.88 MB and GFLOPs of 208.6. Compared to the baseline YOLOv9 model (parameter size: 194.57 MB, GFLOPs: 239.0), the parameter size is reduced by 13.71%, GFLOPs are reduced by 12.72%, and detection accuracy is improved by 1.4%. These results demonstrate that the proposed lightweight YOLOv9 model effectively reduces computational overhead while maintaining excellent detection performance, providing an efficient solution for object detection tasks in resou
暂无评论