This innovative practice full paper presents an empirical study aimed at evaluating the potential of ChatGPT, an advanced AI-driven chatbot, as a supplementary educational tool in undergraduate computer Science and So...
详细信息
ISBN:
(纸本)9798350351507
This innovative practice full paper presents an empirical study aimed at evaluating the potential of ChatGPT, an advanced AI-driven chatbot, as a supplementary educational tool in undergraduate computer Science and softwareengineering (CSSE) courses. The study, initiated in the summer of 2023, focused on assessing ChatGPT's capabilities in generating accurate and complete computer code, identifying and rectifying code defects (bugs), and its scalability in handling larger programs. To achieve this, we conducted a series of experiments with ChatGPT. In one experiment, we introduced bugs into small programs from introductory CSSE courses. ChatGPT was tasked with detecting these defects and providing recommendations for fixing them. We evaluated ChatGPT's effectiveness in bug detection, the quality of its recommendations, and the completeness of the proposed solutions. We sought answers to questions such as whether ChatGPT found all injected defects, provided appropriate recommendations, and delivered high-quality solutions based on criteria like code completeness, size, complexity, and readability. In another experiment, ChatGPT was asked to generate code for assignments from previous CSSE courses, including Intro to computer Science and Programming in C++, Intro to Python Programming, and Object-Oriented Programming and Data Structures using Java. We assessed the generated code's correctness and quality in comparison to student-written code. Similarly, in a third experiment, we evaluated ChatGPT's ability to generate larger programs using requirement specifications from an upper-division CSSE course on Agile softwareengineering. Analyzing both qualitative and quantitative data from these experiments during the summer, we determined that ChatGPT showed promise as an educational tool. Consequently, we developed a plan to integrate ChatGPT into select CSSE courses for the fall semester of 2023. Specifically, ChatGPT was integrated into two of our introductory CSSE cou
This innovative practice full paper presents an empirical study aimed at evaluating the potential of ChatGPT, an advanced AI-driven chatbot, as a supplementary educational tool in undergraduate computer Science and So...
详细信息
ISBN:
(数字)9798350351507
ISBN:
(纸本)9798350363067
This innovative practice full paper presents an empirical study aimed at evaluating the potential of ChatGPT, an advanced AI-driven chatbot, as a supplementary educational tool in undergraduate computer Science and softwareengineering (CSSE) courses. The study, initiated in the summer of 2023, focused on assessing ChatGPT's capabilities in generating accurate and complete computer code, identifying and rectifying code defects (bugs), and its scalability in handling larger programs. To achieve this, we conducted a series of experiments with ChatGPT. In one experiment, we introduced bugs into small programs from introductory CSSE courses. ChatGPT was tasked with detecting these defects and providing recommendations for fixing them. We evaluated ChatGPT's effectiveness in bug detection, the quality of its recommendations, and the completeness of the proposed solutions. We sought answers to questions such as whether ChatGPT found all injected defects, provided appropriate recommendations, and delivered high-quality solutions based on criteria like code completeness, size, complexity, and readability. In another experiment, ChatGPT was asked to generate code for assignments from previous CSSE courses, including Intro to computer Science and Programming in C++, Intro to Python Programming, and Object-Oriented Programming and Data Structures using Java. We assessed the generated code's correctness and quality in comparison to student-written code. Similarly, in a third experiment, we evaluated ChatGPT's ability to generate larger programs using requirement specifications from an upper-division CSSE course on Agile softwareengineering. Analyzing both qualitative and quantitative data from these experiments during the summer, we determined that ChatGPT showed promise as an educational tool. Consequently, we developed a plan to integrate ChatGPT into select CSSE courses for the fall semester of 2023. Specifically, ChatGPT was integrated into two of our introductory CSSE cou
In developing school,every university should pay full attention to employment-oriented development of each *** outstanding students or stylistic active students,schools should set up the appropriate platform,so that t...
详细信息
In developing school,every university should pay full attention to employment-oriented development of each *** outstanding students or stylistic active students,schools should set up the appropriate platform,so that they play a meaningful role,and be demonstrated,especially the employment difficulties faced by the students,they need to be more concerned *** should take effective measures to them,and help needy students to solve the problems pertinently,and then make them back to normal *** article took Sichuan University,Jin Cheng College of computer Science and softwareengineering for example to research helping employment difficulties faced by *** practical work,we explored a classification for students from poor management,and use the bedroom and class structures difficult for students to demonstrate the platform,practical and effective measures to counselor part-time teacher two fold emotional care models.
Cloud storage auditing research is dedicated to solving the data integrity problem of outsourced storage on the cloud. In recent years, researchers have proposed various cloud storage auditing schemes using different ...
详细信息
Cloud storage auditing research is dedicated to solving the data integrity problem of outsourced storage on the cloud. In recent years, researchers have proposed various cloud storage auditing schemes using different techniques. While these studies are elegant in theory, they assume an ideal cloud storage model;that is, they assume that the cloud provides the storage and compute interfaces as required by the proposed schemes. However, this does not hold for mainstream cloud storage systems because these systems only provide read and write interfaces but not the compute interface. To bridge this gap, this work proposes a serverless computing-based cloud storage auditing system for existing mainstream cloud object storage. The proposed system leverages existing cloud storage auditing schemes as a basic building block and makes two adaptations. One is that we use the read interface of cloud object storage to support block data requests in a traditional cloud storage auditing scheme. Another is that we employ the serverless computing paradigm to support block data computation as traditionally required. Leveraging the characteristics of serverless computing, the proposed system realizes economical, pay-as-you-go cloud storage auditing. The proposed system also supports mainstream cloud storage upper layer applications(e.g., file preview) by not modifying the data formats when embedding authentication tags for later auditing. We prototyped and open-sourced the proposed system to a mainstream cloud service, i.e., Tencent Cloud. Experimental results show that the proposed system is efficient and promising for practical use. For 40 GB of data, auditing takes approximately 98 s using serverless computation. The economic cost is 120.48 CNY per year, of which serverless computing only accounts for 46%. In contrast, no existing studies reported cloud storage auditing results for real-world cloud services.
Mobile edge computing(MEC) provides edge services to users in a distributed and on-demand *** to the heterogeneity of edge applications, deploying latency and resource-intensive applications on resourceconstrained dev...
详细信息
Mobile edge computing(MEC) provides edge services to users in a distributed and on-demand *** to the heterogeneity of edge applications, deploying latency and resource-intensive applications on resourceconstrained devices is a key challenge for service providers. This is especially true when underlying edge infrastructures are fault and error-prone. In this paper, we propose a fault tolerance approach named DFGP, for enforcing mobile service fault-tolerance in MEC. It synthesizes a generative optimization network(GON) model for predicting resource failure and a deep deterministic policy gradient(DDPG) model for yielding preemptive migration *** show through extensive simulation experiments that DFGP is more effective in fault detection and guaranteeing quality of service, in terms of fault detection accuracy, migration efficiency, task migration time, task scheduling time,and energy consumption than other existing methods.
Deep reinforcement learning(DRL) has demonstrated significant potential in industrial manufacturing domains such as workshop scheduling and energy system ***, due to the model's inherent uncertainty, rigorous vali...
详细信息
Deep reinforcement learning(DRL) has demonstrated significant potential in industrial manufacturing domains such as workshop scheduling and energy system ***, due to the model's inherent uncertainty, rigorous validation is requisite for its application in real-world tasks. Specific tests may reveal inadequacies in the performance of pre-trained DRL models, while the “black-box” nature of DRL poses a challenge for testing model behavior. We propose a novel performance improvement framework based on probabilistic automata,which aims to proactively identify and correct critical vulnerabilities of DRL systems, so that the performance of DRL models in real tasks can be improved with minimal model ***, a probabilistic automaton is constructed from the historical trajectory of the DRL system by abstracting the state to generate probabilistic decision-making units(PDMUs), and a reverse breadth-first search(BFS) method is used to identify the key PDMU-action pairs that have the greatest impact on adverse outcomes. This process relies only on the state-action sequence and final result of each trajectory. Then, under the key PDMU, we search for the new action that has the greatest impact on favorable results. Finally, the key PDMU, undesirable action and new action are encapsulated as monitors to guide the DRL system to obtain more favorable results through real-time monitoring and correction mechanisms. Evaluations in two standard reinforcement learning environments and three actual job scheduling scenarios confirmed the effectiveness of the method, providing certain guarantees for the deployment of DRL models in real-world applications.
Partial-label learning(PLL) is a typical problem of weakly supervised learning, where each training instance is annotated with a set of candidate labels. Self-training PLL models achieve state-of-the-art performance b...
详细信息
Partial-label learning(PLL) is a typical problem of weakly supervised learning, where each training instance is annotated with a set of candidate labels. Self-training PLL models achieve state-of-the-art performance but suffer from error accumulation problems caused by mistakenly disambiguated instances. Although co-training can alleviate this issue by training two networks simultaneously and allowing them to interact with each other, most existing co-training methods train two structurally identical networks with the same task, i.e., are symmetric, rendering it insufficient for them to correct each other due to their similar limitations. Therefore, in this paper, we propose an asymmetric dual-task co-training PLL model called AsyCo,which forces its two networks, i.e., a disambiguation network and an auxiliary network, to learn from different views explicitly by optimizing distinct tasks. Specifically, the disambiguation network is trained with a self-training PLL task to learn label confidence, while the auxiliary network is trained in a supervised learning paradigm to learn from the noisy pairwise similarity labels that are constructed according to the learned label confidence. Finally, the error accumulation problem is mitigated via information distillation and confidence refinement. Extensive experiments on both uniform and instance-dependent partially labeled datasets demonstrate the effectiveness of AsyCo.
The naive Bayesian classifier(NBC) is a supervised machine learning algorithm having a simple model structure and good theoretical interpretability. However, the generalization performance of NBC is limited to a large...
详细信息
The naive Bayesian classifier(NBC) is a supervised machine learning algorithm having a simple model structure and good theoretical interpretability. However, the generalization performance of NBC is limited to a large extent by the assumption of attribute independence. To address this issue, this paper proposes a novel attribute grouping-based NBC(AG-NBC), which is a variant of the classical NBC trained with different attribute groups. AG-NBC first applies a novel effective objective function to automatically identify optimal dependent attribute groups(DAGs). Condition attributes in the same DAG are strongly dependent on the class attribute, whereas attributes in different DAGs are independent of one another. Then,for each DAG, a random vector functional link network with a SoftMax layer is trained to output posterior probabilities in the form of joint probability density estimation. The NBC is trained using the grouping attributes that correspond to the original condition attributes. Extensive experiments were conducted to validate the rationality, feasibility, and effectiveness of AG-NBC. Our findings showed that the attribute groups chosen for NBC can accurately represent attribute dependencies and reduce overlaps between different posterior probability densities. In addition, the comparative results with NBC, flexible NBC(FNBC), tree augmented Bayes network(TAN), gain ratio-based attribute weighted naive Bayes(GRAWNB), averaged one-dependence estimators(AODE), weighted AODE(WAODE), independent component analysis-based NBC(ICA-NBC), hidden naive Bayesian(HNB) classifier, and correlation-based feature weighting filter for naive Bayes(CFW) show that AG-NBC obtains statistically better testing accuracies, higher area under the receiver operating characteristic curves(AUCs), and fewer probability mean square errors(PMSEs) than other Bayesian classifiers. The experimental results demonstrate that AG-NBC is a valid and efficient approach for alleviating the attribute i
Mashup developers often need to find open application programming interfaces(APIs) for their composition application development. Although most enterprises and service organizations have encapsulated their businesses ...
详细信息
Mashup developers often need to find open application programming interfaces(APIs) for their composition application development. Although most enterprises and service organizations have encapsulated their businesses or resources online as open APIs, finding the right high-quality open APIs is not an easy task from a library with several open APIs. To solve this problem, this paper proposes a deep learning-based open API recommendation(DLOAR) approach. First, the hierarchical density-based spatial clustering of applications with a noise topic model is constructed to build topic models for Mashup clusters. Second,developers' requirement keywords are extracted by the Text Rank algorithm, and the language model is built. Third, a neural network-based three-level similarity calculation is performed to find the most relevant open APIs. Finally, we complement the relevant information of open APIs in the recommended list to help developers make better choices. We evaluate the DLOAR approach on a real dataset and compare it with commonly used open API recommendation approaches: term frequency-inverse document frequency, latent dirichlet allocation, Word2Vec, and Sentence-BERT. The results show that the DLOAR approach has better performance than the other approaches in terms of precision, recall, F1-measure, mean average precision,and mean reciprocal rank.
Point cloud completion is crucial in point cloud processing, as it can repair and refine incomplete 3D data, ensuring more accurate models. However, current point cloud completion methods commonly face a challenge: th...
详细信息
暂无评论