作者:
PAIGE, KKCONVERSE, RAUSNLCdr. Kathleen K. Paige
USN:graduated with a BA from the University of New Hampshire in 1970. She received her commission from Officer Candidate School in April 1971 and performed her first tour of duty with VFP-63 NAS Miramar. LCdr. Paige then received her MS from the Naval Post Graduate School in June 1976 and returned to San Diego to serve as Head Support Software Division at the Fleet Combat Direction System Support Activity. In May 1981 she reported to NA VSEA (PMS-408) where she served initially as Chairman of the NAVMAT Software Engineering Environment Working Group. She has been assigned as Deputy AN/UYK-43 Acquisition Manager since October 1981. LCdr. Paige was designated a fully qualified Engineering Duty Officer in December 1983. Robert A. Converse:is presently the Acquisition Manager for the Ada Language System/Navy (ALS/N) for the Naval Sea Systems Command Tactical Embedded Computer Resources Project. As such
he is responsible for the definition and development of the ALS/N to be provided as a Navy standard computer programming system for Navy mission critical applications. Mr. Converse received a Bachelor of Science degree in Physics from Wheaton College Wheaton II. He spent fourteen years with the Naval Underwater Systems Center Newport Rhode Island during which time he designed and developed the Fortran compiler for the Navy Standard AN/UYK-7 computer. Also during that period he received a Master of Science degree in Computer Science from the University of Rhode Island. His thesis for that degree was entitled “Optimization Techniques for the NUSC Fortran Cross-Compiler”. Mr. Converse started his involvement with the Ada program in 1975 with the initial “Strawman” requirements review. Subsequently he was named as the Navy Ada Distinguished Reviewer and was intimately involved in the selection and refinement of the Ada language as it evolved to become ANSI/MIL-STD-1815A.
The U.S. Navy introduced the use of digital computers in mission critical applications over a quarter of a century ago. Today, virtually every system in the current and planned Navy inventory makes extensive use of co...
The U.S. Navy introduced the use of digital computers in mission critical applications over a quarter of a century ago. Today, virtually every system in the current and planned Navy inventory makes extensive use of computer technology. computers embedded in mission critical Navy systems are integral to our strategic and tactical defense capabilities. Thus, the military power of the U.S. Navy is inextricably tied to the use of programmable digital computers. The computer program is the essential element that embodies the system “intelligence”. In addition, it provides the flexibility to respond to changing threats and requirements. However, this very flexibility and capability poses a host of difficulties hindering full realization of the advantages. This paper describes the lessons learned about computer program development over the past twenty five years and discusses a software engineering process that addresses these lessons. It then describes how Ada and its related Ada programming Support and Run-Time Environments foster this software engineering process to improve computer program productivity and achieve greater system reliability and adaptibility. Finally, the paper discusses how the use of Ada and its environments can enhance the interoperability and transferability of computer programs among Navy projects and significantly reduce overall life cycle costs for Navy mission critical computer programs.
This paper discusses the Interactive Graphics system used by the General Electric Company, Medium Steam Turbine Department (Engineering & Manufacturing) for designing, drafting, and manufacturing applications. A b...
This paper discusses the Interactive Graphics system used by the General Electric Company, Medium Steam Turbine Department (Engineering & Manufacturing) for designing, drafting, and manufacturing applications. A brief overview of the hardware malting up the system is described, followed by a more detailed description of the actual applications. Two-dimensional applications described include a Heat Balance Analysis, Flow Diagrams, and Electrical Schematics. A more fruitful area for increased productivity gains is described in the three-dimensional or mechanical applications including turbine design & layout and bucket design. coordination of the design with manufacturing for numerical control tape generation is described through CAM and Plate Frame Cutting applications. Finally, a short review of the engineering design work using Interactive Graphics is discussed. Productivity gains of 2.6 to 1 are being realized, and the overall savings to the Medium Steam Department are outlined.
The AN/UYK‐502 Microcomputer is a full‐scale, general‐purpose 16‐bit militarized computer designed to emmulate the AN/UYK‐20 and AN/AYK‐14, and to be implemented in a shipboard system employing distributed syste...
作者:
BOLD, NTBOURETTE, APDr. Norbert T. Bold graduated from Marquette University and later received his M.S. and Ph.D. degrees in Electrical Engineering from Northwestern University. He served three years as a Naval Engineering Officer aboard an Aircraft Carrier and a Minesweeper and has nineteen years technical experience in shipboard navigation
underwater target and SDMS projects for the Navy. He is currently a Program Manager in the Autonetics Marine Systems Division Rockwell International where his primary assignment is the development of advanced concepts and applications of SDMS to Navy programs. He has published several technical papers. was elected to four Scholastic Honorary Societies and was the recipient of a NROTC Scholarship. Mr. A.P. Bourette
Manager Systems Applications Autonetics Marine Systems Division. received his B.S. degree in Mathematical Physics from Long Beach State University. He began his career with a Computer Analysis Unit. performing tasks related to computer application. programming and interfacing. He has made significant contributions to the Central Computer Complex approach adopted for the SSN-688 Combat System and has performed inertial systems engineering efforts on the MK2 SINS for the POSEIDON Program. He spent some time in the Washington D.C. area providing technical expertise to various Navy organizations. Upon his return he soon was selected to manage the Systems Applications organization at Rockwell International. This organization is primarily responsible for the Shipboard Application of SDMS. He has directed several application studies showing the significant advantages associated with multiplexing. Recently. he provided the technical direction for the FY80 SSN SDMS Preliminary Design Phase.
Rockwell International is currently under Navy contract to fabricate the Engineering Development Model (EDM) of the Shipboard Data Multiplex system (SDMS) for general data transfer aboard surface ships and submarines....
Rockwell International is currently under Navy contract to fabricate the Engineering Development Model (EDM) of the Shipboard Data Multiplex system (SDMS) for general data transfer aboard surface ships and submarines. The application of SDMS significantly reduces hardware such as cables, switchboards, and Signal Data Converters (SDC), and it provides the capability to add many desired features which are currently not practicable. In applying SDMS to a specific ship, a massive amount of signal data must be considered. The Application Design Automation Program (ADAP) is a set of computer programs that have been developed to accomplish this task. ADAP com bines signal population data, ships configuration data, and SDMS hardware characteristics to produce an SDMS configuration layout together with documentation necessary to analyze, evaluate, and implement the system. Specific outputs include hardware requirements, system layout, and interface requirements including wire list information. The Timing, Event and Load Simulation (TELS) Program simulates SDMS and provides performance data (system capacity, throughput rate, transport delays) for any system configuration. Conventional SDCs can be elimianted from Navy shipboard systems when SDMS is used. SDMS provides the necessary data distribution, signal conversion, and computer interface. In addition, many functions of the conventional switchboards can be performed within SDMS, thus reducing the size or eliminating conventional switchboards. Very small switch-bomb will provide the necessary control of data distribution. With SDMS, an automatic and continuous Noise and Vibration Monitoring (NVM) capability is readily available. The automated NVM function will enhance the safety, operation, and maintenance of the ship. Problems with machinery or excessive self-noise generation will be detected much sooner, and corrective action implemented on a timely basis.
暂无评论