Aims: The aim of this paper is to develop a new, simple equation for deep spherical indentations. Background: The Hertzian theory is the most widely applied mathematical tool when testing soft materials because it pro...
详细信息
Data lake metadata management is crucial for clearly describing stored data and ensuring efficient search query results, especially for semi-structured and unstructured data. Moreover, high-quality metadata provides t...
详细信息
This research paper discusses the Real Time Operating systems;their types, software, benefits, and drawbacks, as well as how they work, including task states and control blocks. This research goes into great detail to...
详细信息
Emotion Recognition in Conversations(ERC)is fundamental in creating emotionally ***-BasedNetwork(GBN)models have gained popularity in detecting conversational contexts for ERC ***,their limited ability to collect and ...
详细信息
Emotion Recognition in Conversations(ERC)is fundamental in creating emotionally ***-BasedNetwork(GBN)models have gained popularity in detecting conversational contexts for ERC ***,their limited ability to collect and acquire contextual information hinders their *** propose a Text Augmentation-based computational model for recognizing emotions using transformers(TA-MERT)to address *** proposed model uses the Multimodal Emotion Lines Dataset(MELD),which ensures a balanced representation for recognizing human *** used text augmentation techniques to producemore training data,improving the proposed model’s *** encoders train the deep neural network(DNN)model,especially Bidirectional Encoder(BE)representations that capture both forward and backward contextual *** integration improves the accuracy and robustness of the proposed ***,we present a method for balancing the training dataset by creating enhanced samples from the original *** balancing the dataset across all emotion categories,we can lessen the adverse effects of data imbalance on the accuracy of the proposed *** results on the MELD dataset show that TA-MERT outperforms earlier methods,achieving a weighted F1 score of 62.60%and an accuracy of 64.36%.Overall,the proposed TA-MERT model solves the GBN models’weaknesses in obtaining contextual data for ***-MERT model recognizes human emotions more accurately by employing text augmentation and transformer-based *** balanced dataset and the additional training samples also enhance its *** findings highlight the significance of transformer-based approaches for special emotion recognition in conversations.
The Cranfield paradigm has served as a foundational approach for developing test collections, with relevance judgments typically conducted by human assessors. However, the emergence of large language models (LLMs) has...
详细信息
Neural networks have become a leading model in modern machine learning, able to model even the most complex data. For them to be properly trained, however, a lot of computational resources are required. With the carbo...
详细信息
Cancers have emerged as a significant concern due to their impact on public health and society. The examination and interpretation of tissue sections stained with Hematoxylin and Eosin (H&E) play a crucial role in...
详细信息
Cancers have emerged as a significant concern due to their impact on public health and society. The examination and interpretation of tissue sections stained with Hematoxylin and Eosin (H&E) play a crucial role in disease assessment, particularly in cases like gastric cancer. Microsatellite instability (MSI) is suggested to contribute to the carcinogenesis of specific gastrointestinal tumors. However, due to the nonspecific morphology observed in H&E-stained tissue sections, MSI determination often requires costly evaluations through various molecular studies and immunohistochemistry methods in specialized molecular pathology laboratories. Despite the high cost, international guidelines recommend MSI testing for gastrointestinal cancers. Thus, there is a pressing need for a new diagnostic modality with lower costs and widespread applicability for MSI detection. This study aims to detect MSI directly from H&E histology slides in gastric cancer, providing a cost-effective alternative. The performance of well-known deep convolutional neural networks (DCNNs) and a proposed architecture are compared. Medical image datasets are typically smaller than benchmark datasets like ImageNet, necessitating the use of off-the-shelf DCNN architectures developed for large datasets through techniques such as transfer learning. Designing an architecture proportional to a custom dataset can be tedious and may not yield desirable results. In this work, we propose an automatic method to extract a lightweight and efficient architecture from a given heavy architecture (e.g., well-known off-the-shelf DCNNs) proportional to a specific dataset. To predict MSI instability, we extracted the MicroNet architecture from the Xception network using the proposed method and compared its performance with other well-known architectures. The models were trained using tiles extracted from whole-slide images, and two evaluation strategies, tile-based and whole-slide image (WSI)-based, were employed and comp
we introduced image encryption algorithms with high sensitivity, such that even a single alteration in a plain-text image would result in a complete transformation of the ciphered image. The first algorithm employed p...
详细信息
Changes in the Atmospheric Electric Field Signal(AEFS)are highly correlated with weather changes,especially with thunderstorm ***,little attention has been paid to the ambiguous weather information implicit in AEFS **...
详细信息
Changes in the Atmospheric Electric Field Signal(AEFS)are highly correlated with weather changes,especially with thunderstorm ***,little attention has been paid to the ambiguous weather information implicit in AEFS *** this paper,a Fuzzy C-Means(FCM)clustering method is used for the first time to develop an innovative approach to characterize the weather attributes carried by ***,a time series dataset is created in the time domain using AEFS *** AEFS-based weather is evaluated according to the time-series Membership Degree(MD)changes obtained by inputting this dataset into the ***,thunderstorm intensities are reflected by the change in distance from a thunderstorm cloud point charge to an AEF ***,a matching relationship is established between the normalized distance and the thunderstorm dominant MD in the space ***,the rationality and reliability of the proposed method are verified by combining radar charts and expert *** results confirm that this method accurately characterizes the weather attributes and changes in the AEFS,and a negative distance-MD correlation is obtained for the first *** detection of thunderstorm activity by AEF from the perspective of fuzzy set technology provides a meaningful guidance for interpretable thunderstorms.
Nowadays, IoT is being used in several applications, such as smart cities, health care and innovating agriculture and other applications. Moreover, the evolution of IoT technologies such as LoRaWAN, SIGFOX, ZigBee, an...
详细信息
暂无评论