In this digital era, users frequently share their thoughts, preferences, and ideas through social media, which reflect their Basic Human Values. Basic Human Values (aka values) are the fundamental aspects of human beh...
详细信息
This systematic review gave special attention to diabetes and the advancements in food and nutrition needed to prevent or manage diabetes in all its forms. There are two main forms of diabetes mellitus: Type 1 (T1D) a...
详细信息
Fires are becoming one of the major natural hazards that threaten the ecology, economy, human life and even more worldwide. Therefore, early fire detection systems are crucial to prevent fires from spreading out of co...
详细信息
In agriculture, detecting plant diseases is crucial for optimal plant growth. Initially, input images are collected from three datasets: banana leaf spot diseases (BananaLSD) dataset, banana leaf dataset, and PSFD-Mus...
详细信息
Multi-agent path finding is one of the key problems in the topic of multi-agent system. While some inevitable execution delays resulting from the realistic factors, such as robot faults or avoiding human etc., may mak...
详细信息
Multi-agent path finding is one of the key problems in the topic of multi-agent system. While some inevitable execution delays resulting from the realistic factors, such as robot faults or avoiding human etc., may make the path plan invalid. Our aim is to effectively find paths with robustness to k-delays for all agents, i.e., each agent can get a k-step margin in its paths without breaking the whole plan, especially for the large-scale systems. We propose a priority-based hierarchical framework for k-robust multi-agent path finding, where the pattern of searching path while avoiding conflict is profit to reduce the burden of conflict handling in k-robust planning. Then, the classification and generation rules of robust constraints are designed to guarantee global k-robustness of prioritized planning. Finally, for the new challenge of k-robust starting predicament, a multi-level key-agent guided priority adjustment mechanism is proposed to improve solution success rate. Experimental results show that the proposed algorithm can effectively reduce the runtime, and averagely maintain a success rate of over 95%. Especially for large-scale problems with hundreds of agents, the runtime can be reduced to a few seconds. In addition, the runtime does not increase dramatically as the k-value grows from 0 to 7. IEEE
Cloud computing is a computing service done not on a local device but an internet connection to a data centre infrastructure. The cloud computing system also provides a scalability solution where cloud computing can i...
详细信息
The article addresses the output-feedback control issue for a class of multi-input multi-output(MIMO)uncertain nonlinear systems with multiple event-triggered mechanisms(ETM).Compared to previous event-triggering stud...
详细信息
The article addresses the output-feedback control issue for a class of multi-input multi-output(MIMO)uncertain nonlinear systems with multiple event-triggered mechanisms(ETM).Compared to previous event-triggering studies,this paper aims to trigger both the output and filtered *** nonlinear dynamics are approximated using fuzzy logic systems(FLSs).Then,a novel kind of state observer has been designed to deal with unmeasurable state problems using the triggered output *** sampled estimated state,the triggered output signal,and the filtered signal are utilized to propose an event-triggering mechanism that consists of sensor-to-observer(SO)and observer-to-controller(OC).An event-triggered output feedback control approach is given inside backstepping control,whereby the filter may be employed to circumvent the issue of the virtual control function not being differentiable at the trigger *** is testified that,according to the Lyapunov stability analysis scheme,all closed-loop signals and the system output are ultimately uniformly constrained by our control ***,the simulation examples are performed to confirm the theoretical findings.
Federated learning (FL) is widely used in various fields because it can guarantee the privacy of the original data source. However, in data-sensitive fields such as Internet of Vehicles (IoV), insecure communication c...
详细信息
Federated learning (FL) is widely used in various fields because it can guarantee the privacy of the original data source. However, in data-sensitive fields such as Internet of Vehicles (IoV), insecure communication channels, semi-trusted RoadSide Unit (RSU), and collusion between vehicles and the RSU may lead to leakage of model parameters. Moreover, when aggregating data, since different vehicles usually have different computing resources, vehicles with relatively insufficient computing resources will affect the data aggregation efficiency. Therefore, in order to solve the privacy leakage problem and improve the data aggregation efficiency, this paper proposes a privacy-preserving data aggregation protocol for IoV with FL. Firstly, the protocol is designed based on methods such as shamir secret sharing scheme, pallier homomorphic encryption scheme and blinding factor protection, which can guarantee the privacy of model parameters. Secondly, the protocol improves the data aggregation efficiency by setting dynamic training time windows. Thirdly, the protocol reduces the frequent participations of Trusted Authority (TA) by optimizing the fault-tolerance mechanism. Finally, the security analysis proves that the proposed protocol is secure, and the performance analysis results also show that the proposed protocol has high computation and communication efficiency. IEEE
作者:
Petkar, Taniya G.Kumar, PraveenSarate, Kirtiksha U.
Faculty of Engineering and Technology Department of Computer Science & Medical Engineering Maharashtra Sawangi Wardha442001 India
Faculty of Engineering and Technology Department of Computer Science and Design Maharashtra Sawangi Wardha442001 India
By enabling precise, individualized, and effective treatments, the integration of artificial intelligence (AI) and machine learning (ML) into wound and skin healing is revolutionizing healthcare. Artificial intelligen...
详细信息
The agriculture industry's production and food quality have been impacted by plant leaf diseases in recent years. Hence, it is vital to have a system that can automatically identify and diagnose diseases at an ini...
详细信息
暂无评论