This study proposes a hybrid optimization-based mobility management strategy employing Kinetic Gas Molecular Optimization (KGMO) and Ant Lion Optimization (ALO). Initially, KGMO calculates particle properties, such as...
详细信息
Agile methodology does not formally define the role of a project manager, and the Scrum methodology distributes this role among team members. However, the success of software development projects often depends heavily...
详细信息
Safety equipment detection is an important application of object detection, receiving widespread attention in fields such as smart construction sites and video surveillance. Significant progress has been made in objec...
详细信息
With the advent of the fourth industrial revolution, data ushered in explosive growth. Federated learning can protect users’ privacy and raw data from being known by third parties. Its client data is only trained loc...
详细信息
Kidney disease (KD) is a gradually increasing global health concern. It is a chronic illness linked to higher rates of morbidity and mortality, a higher risk of cardiovascular disease and numerous other illnesses, and...
详细信息
Gesture recognition has diverse application prospects in the field of human-computer ***,gesture recognition devices based on strain sensors have achieved remarkable results,among which liquid metal materials have con...
详细信息
Gesture recognition has diverse application prospects in the field of human-computer ***,gesture recognition devices based on strain sensors have achieved remarkable results,among which liquid metal materials have considerable advantages due to their high tensile strength and *** improve the detection sensitivity of liquid metal strain sensors,a sawtooth-enhanced bending sensor is proposed in this *** with the results from previous studies,the bending sensor shows enhanced resistance *** addition,combined with machine learning algorithms,a gesture recognition glove based on the sawtooth-enhanced bending sensor is also fabricated in this study,and various gestures are accurately *** the fields of human-computer interaction,wearable sensing,and medical health,the sawtooth-enhanced bending sensor shows great potential and can have wide application prospects.
Multi-hop reasoning for incomplete Knowledge Graphs(KGs)demonstrates excellent interpretability with decent *** Learning(RL)based approaches formulate multi-hop reasoning as a typical sequential decision *** intractab...
详细信息
Multi-hop reasoning for incomplete Knowledge Graphs(KGs)demonstrates excellent interpretability with decent *** Learning(RL)based approaches formulate multi-hop reasoning as a typical sequential decision *** intractable shortcoming of multi-hop reasoning with RL is that sparse reward signals make performance *** mainstream methods apply heuristic reward functions to counter this ***,the inaccurate rewards caused by heuristic functions guide the agent to improper inference paths and unrelated object *** this end,we propose a novel adaptive Inverse Reinforcement Learning(IRL)framework for multi-hop reasoning,called AInvR.(1)To counter the missing and spurious paths,we replace the heuristic rule rewards with an adaptive rule reward learning mechanism based on agent’s inference trajectories;(2)to alleviate the impact of over-rewarded object entities misled by inaccurate reward shaping and rules,we propose an adaptive negative hit reward learning mechanism based on agent’s sampling strategy;(3)to further explore diverse paths and mitigate the influence of missing facts,we design a reward dropout mechanism to randomly mask and perturb reward parameters for the reward learning *** results on several benchmark knowledge graphs demonstrate that our method is more effective than existing multi-hop approaches.
Sentiment analysis in Chinese classical poetry has become a prominent topic in historical and cultural tracing,ancient literature research,***,the existing research on sentiment analysis is relatively *** does not eff...
详细信息
Sentiment analysis in Chinese classical poetry has become a prominent topic in historical and cultural tracing,ancient literature research,***,the existing research on sentiment analysis is relatively *** does not effectively solve the problems such as the weak feature extraction ability of poetry text,which leads to the low performance of the model on sentiment analysis for Chinese classical *** this research,we offer the SA-Model,a poetic sentiment analysis ***-Model firstly extracts text vector information and fuses it through Bidirectional encoder representation from transformers-Whole word masking-extension(BERT-wwmext)and Enhanced representation through knowledge integration(ERNIE)to enrich text vector information;Secondly,it incorporates numerous encoders to remove text features at multiple levels,thereby increasing text feature information,improving text semantics accuracy,and enhancing the model’s learning and generalization capabilities;finally,multi-feature fusion poetry sentiment analysis model is *** feasibility and accuracy of the model are validated through the ancient poetry sentiment *** with other baseline models,the experimental findings indicate that SA-Model may increase the accuracy of text semantics and hence improve the capability of poetry sentiment analysis.
Software-defined Networking (SDN) is an innovative network architecture tailored to address the modern demands of network virtualization and cloud computing, which require features such as programmability, flexibility...
详细信息
With the rise of encrypted traffic,traditional network analysis methods have become less effective,leading to a shift towards deep learning-based *** these,multimodal learning-based classification methods have gained ...
详细信息
With the rise of encrypted traffic,traditional network analysis methods have become less effective,leading to a shift towards deep learning-based *** these,multimodal learning-based classification methods have gained attention due to their ability to leverage diverse feature sets from encrypted traffic,improving classification ***,existing research predominantly relies on late fusion techniques,which hinder the full utilization of deep features within the *** address this limitation,we propose a novel multimodal encrypted traffic classification model that synchronizes modality fusion with multiscale feature ***,our approach performs real-time fusion of modalities at each stage of feature extraction,enhancing feature representation at each level and preserving inter-level correlations for more effective *** continuous fusion strategy improves the model’s ability to detect subtle variations in encrypted traffic,while boosting its robustness and adaptability to evolving network *** results on two real-world encrypted traffic datasets demonstrate that our method achieves a classification accuracy of 98.23% and 97.63%,outperforming existing multimodal learning-based methods.
暂无评论