Brain signal analysis from electroencephalogram(EEG)recordings is the gold standard for diagnosing various neural disorders especially epileptic *** signals are highly chaotic compared to normal brain signals and thus...
详细信息
Brain signal analysis from electroencephalogram(EEG)recordings is the gold standard for diagnosing various neural disorders especially epileptic *** signals are highly chaotic compared to normal brain signals and thus can be identified from EEG *** the current seizure detection and classification landscape,most models primarily focus on binary classification—distinguishing between seizure and non-seizure *** effective for basic detection,these models fail to address the nuanced stages of seizures and the intervals between *** identification of per-seizure or interictal stages and the timing between seizures is crucial for an effective seizure alert *** granularity is essential for improving patient-specific interventions and developing proactive seizure management *** study addresses this gap by proposing a novel AI-based approach for seizure stage classification using a Deep Convolutional Neural Network(DCNN).The developed model goes beyond traditional binary classification by categorizing EEG recordings into three distinct classes,thus providing a more detailed analysis of seizure *** enhance the model’s performance,we have optimized the DCNN using two advanced techniques:the Stochastic Gradient Algorithm(SGA)and the evolutionary Genetic Algorithm(GA).These optimization strategies are designed to fine-tune the model’s accuracy and ***,k-fold cross-validation ensures the model’s reliability and generalizability across different data *** and validated on the Bonn EEG data sets,the proposed optimized DCNN model achieved a test accuracy of 93.2%,demonstrating its ability to accurately classify EEG *** summary,the key advancement of the present research lies in addressing the limitations of existing models by providing a more detailed seizure classification system,thus potentially enhancing the effectiveness of real-time seizure prediction and management systems in clinic
Modernization and intense industrialization have led to a substantial improvement in people’s quality of life. However, the aspiration for achieving an improved quality of life results in environmental contamination....
详细信息
We conducted visualization experiments to investigate the macroscopic mixing of upper and lower stratified suspensions. We used spectroscopy to distinguish the upper and lower suspensions in the images recorded by a c...
详细信息
Generating financial reports from a piece of news is a challenging task due to the lack of sufficient background knowledge to effectively generate long financial reports. To address this issue, this article proposes a...
详细信息
Background: The IoT (Internet of Things) assigns to the capacity of Device-to-Machine (D2M) connections, which is a vital component in the development of the digital economy. IoT integration with a human being enables...
详细信息
In the electronic manufacturing industry, accurate detection of PCB defects is crucial as it directly impacts product quality and reliability. The primary challenges in PCB defect detection include missed detections a...
详细信息
We developed an information system using an object-oriented programming language and a distributed database (DDB) consisting of multiple interconnected databases across a computer network, managed by a distributed dat...
详细信息
Intrusion detection systems(IDS)are one of the most promising ways for securing data and networks;In recent decades,IDS has used a variety of categorization *** classifiers,on the other hand,do not work effectively un...
详细信息
Intrusion detection systems(IDS)are one of the most promising ways for securing data and networks;In recent decades,IDS has used a variety of categorization *** classifiers,on the other hand,do not work effectively unless they are combined with additional algorithms that can alter the classifier’s parameters or select the optimal sub-set of features for the *** are used in tandem with classifiers to increase the stability and with efficiency of the classifiers in detecting *** algorithms,on the other hand,have a number of limitations,particularly when used to detect new types of *** this paper,the NSL KDD dataset and KDD Cup 99 is used to find the performance of the proposed classifier model and compared;These two IDS dataset is preprocessed,then Auto Cryptographic Denoising(ACD)adopted to remove noise in the feature of the IDS dataset;the classifier algorithms,K-Means and Neural network classifies the dataset with adam *** classifier is evaluated by measuring performance measures like f-measure,recall,precision,detection rate and *** neural network obtained the highest classifying accuracy as 91.12%with drop-out function that shows the efficiency of the classifier model with drop-out function for KDD Cup99 *** their power and limitations in the proposed methodology that could be used in future works in the IDS area.
The rapid evolution of healthcare technology, no-tably the integration of the Internet of Medical Things (loMT), has revolutionized patient care, diagnosis, and treatment method-ologies. However, this progress introdu...
详细信息
This paper introduces an advanced road damage detection algorithm that effectively addresses the shortcomings of existing models, including limited detection performance and large parameter sizes, by utilizing the YOL...
详细信息
暂无评论