This article investigates the impact of Artificial Intelligence (AI) and ChatGPT in the business sector. It highlights the evolution of AI, focusing on the integration and applications of technologies like machine lea...
详细信息
Retrieving legal texts is an important step for building a question answering system on law domain, which needs relevant articles to answer a query. Remarkable research has been done on legal information retrieval. Ho...
详细信息
For the differences in composition and proportions of input materials, end-point quality requirements and slagging specifications, it is difficult to construct a generalized model to guide steelmaking production. Ther...
详细信息
Minimizing the energy consumption to increase the life span and performance of multiprocessor system on chip(MPSoC)has become an integral chip design issue for multiprocessor *** performance measurement of computation...
详细信息
Minimizing the energy consumption to increase the life span and performance of multiprocessor system on chip(MPSoC)has become an integral chip design issue for multiprocessor *** performance measurement of computational systems is changing with the advancement in *** to shrinking and smaller chip size power densities onchip are increasing rapidly that increasing chip temperature in multi-core embedded *** operating speed of the device decreases when power consumption reaches a threshold that causes a delay in complementary metal oxide semiconductor(CMOS)circuits because high on-chip temperature adversely affects the life span of the *** this paper an energy-aware dynamic power management technique based on energy aware earliest deadline first(EA-EDF)scheduling is proposed for improving the performance and reliability by reducing energy and power consumption in the system on chip(SOC).Dynamic power management(DPM)enables MPSOC to reduce power and energy consumption by adopting a suitable core configuration for task *** migration avoids peak temperature values in the multicore *** utilization factor(ui)on central processing unit(CPU)core consumes more energy and increases the temperature *** technique switches the core bymigrating such task to a core that has less temperature and is in a low power *** proposed EA-EDF scheduling technique migrates load on different cores to attain stability in temperature among multiple cores of the CPU and optimized the duration of the idle and sleep periods to enable the low-temperature *** effectiveness of the EA-EDF approach reduces the utilization and energy consumption compared to other existing methods and *** simulation results show the improvement in performance by optimizing 4.8%on u_(i) 9%,16%,23%and 25%at 520 MHz operating frequency as compared to other energy-aware techniques for MPSoCs when the least number of tasks is in running state and can
Reinforcement learning (RL)-based brain–machine interfaces (BMIs) hold promise for restoring motor functions in paralyzed individuals. These interfaces interpret neural activity to control external devices through tr...
详细信息
In recent years,wearable devices-based Human Activity Recognition(HAR)models have received significant *** developed HAR models use hand-crafted features to recognize human activities,leading to the extraction of basi...
详细信息
In recent years,wearable devices-based Human Activity Recognition(HAR)models have received significant *** developed HAR models use hand-crafted features to recognize human activities,leading to the extraction of basic *** images captured by wearable sensors contain advanced features,allowing them to be analyzed by deep learning algorithms to enhance the detection and recognition of human *** lighting and limited sensor capabilities can impact data quality,making the recognition of human actions a challenging *** unimodal-based HAR approaches are not suitable in a real-time ***,an updated HAR model is developed using multiple types of data and an advanced deep-learning ***,the required signals and sensor data are accumulated from the standard *** these signals,the wave features are *** the extracted wave features and sensor data are given as the input to recognize the human *** Adaptive Hybrid Deep Attentive Network(AHDAN)is developed by incorporating a“1D Convolutional Neural Network(1DCNN)”with a“Gated Recurrent Unit(GRU)”for the human activity recognition ***,the Enhanced Archerfish Hunting Optimizer(EAHO)is suggested to fine-tune the network parameters for enhancing the recognition *** experimental evaluation is performed on various deep learning networks and heuristic algorithms to confirm the effectiveness of the proposed HAR *** EAHO-based HAR model outperforms traditional deep learning networks with an accuracy of 95.36,95.25 for recall,95.48 for specificity,and 95.47 for precision,*** result proved that the developed model is effective in recognizing human action by taking less ***,it reduces the computation complexity and overfitting issue through using an optimization approach.
This research proposes a quad-mode H-beam metasurface (MTS)-embedded dual-band circularly-polarized (CP) multi-tiered antenna scheme with 5G (n79) and Wi-Fi 6E capabilities. The proposed antenna scheme consists of thr...
详细信息
Accurate monitoring of raft aquaculture areas (RAAs) is particularly important for the protection of marine ecosystems. However, existing semantic segmentation methods are often degraded by severe shrinkage when extra...
详细信息
With the continuous advancement of satellite technology, remote sensing images has been increasingly applied in fields such as urban planning, environmental monitoring, and disaster response. However, remote sensing i...
详细信息
With the continuous advancement of satellite technology, remote sensing images has been increasingly applied in fields such as urban planning, environmental monitoring, and disaster response. However, remote sensing images often feature small target sizes and complex backgrounds, posing significant computational challenges for object detection tasks. To address this issue, this paper proposes a lightweight remote sensing images object detection algorithm based on YOLOv9. The proposed algorithm incorporates the SimRMB module, which effectively reduces computational complexity while improving the efficiency and accuracy of feature extraction. Through a dynamic attention mechanism, SimRMB is capable of focusing on important regions while minimizing background interference, and by integrating residual learning and skip connections, it ensures the stability of deep networks. To further enhance detection performance, the FasterRepNCSPELAN4 module is introduced, which employs PConv operations to reduce computational load and memory usage. It also utilizes dilated convolutions and DFC attention mechanisms to strengthen feature extraction, thereby increasing the efficiency and accuracy of object detection. Additionally, this study integrates the GhostModuleV2 module, which generates core feature maps and employs lightweight operations to create redundant features, greatly reducing the computational complexity of *** results show that on the SIMD dataset, the improved YOLOv9 model has a parameter size of 167.88 MB and GFLOPs of 208.6. Compared to the baseline YOLOv9 model (parameter size: 194.57 MB, GFLOPs: 239.0), the parameter size is reduced by 13.71%, GFLOPs are reduced by 12.72%, and detection accuracy is improved by 1.4%. These results demonstrate that the proposed lightweight YOLOv9 model effectively reduces computational overhead while maintaining excellent detection performance, providing an efficient solution for object detection tasks in resou
In the era of digital transformation and increasing concerns regarding data privacy, the concept of Self-Sovereign Identity (SSI) has attained substantial recognization. SSI offers individuals greater control over the...
详细信息
暂无评论