Software security poses substantial risks to our society because software has become part of our life. Numerous techniques have been proposed to resolve or mitigate the impact of software security issues. Among them, ...
详细信息
Software security poses substantial risks to our society because software has become part of our life. Numerous techniques have been proposed to resolve or mitigate the impact of software security issues. Among them, software testing and analysis are two of the critical methods, which significantly benefit from the advancements in deep learning technologies. Due to the successful use of deep learning in software security, recently,researchers have explored the potential of using large language models(LLMs) in this area. In this paper, we systematically review the results focusing on LLMs in software security. We analyze the topics of fuzzing, unit test, program repair, bug reproduction, data-driven bug detection, and bug triage. We deconstruct these techniques into several stages and analyze how LLMs can be used in the stages. We also discuss the future directions of using LLMs in software security, including the future directions for the existing use of LLMs and extensions from conventional deep learning research.
Rate-splitting multiple access(RSMA) has recently gained attention as a potential robust multiple access(MA)scheme for upcoming wireless networks. Given its ability to efficiently utilize wireless resources and design...
详细信息
Rate-splitting multiple access(RSMA) has recently gained attention as a potential robust multiple access(MA)scheme for upcoming wireless networks. Given its ability to efficiently utilize wireless resources and design interference management strategies, it can be applied to unmanned aerial vehicle(UAV) networks to provide convenient services for large-scale access ground users. However, due to the line-of-sight(LoS) broadcast nature of UAV transmission, information is susceptible to eavesdropping in RSMA-based UAV networks. Moreover, the superposition of signals at the receiver in such networks becomes complicated. To cope with the challenge, we propose a two-user multi-input single-output(MISO) RSMA-based UAV secure transmission framework in downlink communication networks. In a passive eavesdropping scenario, our goal is to maximize the sum secrecy rate by optimizing the transmit beamforming and deployment location of the UAV-base station(UAV-BS),while considering quality-of-service(QoS) constraints, maximum transmit power, and flight space limitations. To address the non-convexity of the proposed problem, the optimization problem is first decoupled into two subproblems. Then, the successive convex approximation(SCA) method is employed to solve each subproblem using different propositions. In addition, an alternating optimization(AO)-based location RSMA(L-RSMA) beamforming algorithm is developed to implement joint optimization to obtain the suboptimal solution. Numerical results demonstrate that(1) the proposed L-RSMA scheme yields a28.97% higher sum secrecy rate than the baseline L-space division multiple access(SDMA) scheme;(2) the proposed L-RSMA scheme improves the security performance by 42.61% compared to the L-non-orthogonal multiple access(NOMA) scheme.
In the past decade, thanks to the powerfulness of deep-learning techniques, we have witnessed a whole new era of automated code generation. To sort out developments, we have conducted a comprehensive review of solutio...
详细信息
In the past decade, thanks to the powerfulness of deep-learning techniques, we have witnessed a whole new era of automated code generation. To sort out developments, we have conducted a comprehensive review of solutions to deep learning-based code generation. In this survey, we generally formalize the pipeline and procedure of code generation and categorize existing solutions according to taxonomy from perspectives of architecture, model-agnostic enhancing strategy, metrics, and tasks. In addition, we outline the challenges faced by current dominant large models and list several plausible directions for future research. We hope that this survey may provide handy guidance to understanding, utilizing, and developing deep learning-based code-generation techniques for researchers and practitioners.
Cloud storage is now widely used, but its reliability has always been a major concern. Cloud block storage(CBS) is a famous type of cloud storage. It has the closest architecture to the underlying storage and can prov...
详细信息
Cloud storage is now widely used, but its reliability has always been a major concern. Cloud block storage(CBS) is a famous type of cloud storage. It has the closest architecture to the underlying storage and can provide interfaces for other types. Data modifications in CBS have potential risks such as null reference or data *** verification of these operations can improve the reliability of CBS to some extent. Although separation logic is a mainstream approach to verifying program correctness, the complex architecture of CBS creates some challenges for verifications. This paper develops a proof system based on separation logic for verifying the CBS data modifications. The proof system can represent the CBS architecture, describe the properties of the CBS system state, and specify the behavior of CBS data modifications. Using the interactive verification approach from Coq, the proof system is implemented as a verification tool. With this tool, the paper builds machine-checked proofs for the functional correctness of CBS data modifications. This work can thus analyze the reliability of cloud storage from a formal perspective.
Investigating trip purposes represents an important phase of travel demand modeling which allows to correctly infer mobility patterns and to better understand travel behavior. Until now, researchers collected informat...
详细信息
We predict that an interplay between isotropic and anisotropic exchange interactions in a honeycomb lattice structure can lead to topological edge conduction when the anisotropic interaction is at least twice the stre...
详细信息
We predict that an interplay between isotropic and anisotropic exchange interactions in a honeycomb lattice structure can lead to topological edge conduction when the anisotropic interaction is at least twice the strength of the isotropic interaction. For materials like Na2IrO3, such a strong anisotropic exchange interaction simultaneously induces a zigzag type of antiferromagnetic order that breaks the time-reversal symmetry of the topological edge conductor. We show that the electronic transport in such topological conductors will exhibit a quantized Hall conductance without any external magnetic field when the Fermi energy lies within a particular energy range.
Foundation models(FMs) [1] have revolutionized software development and become the core components of large software systems. This paradigm shift, however, demands fundamental re-imagining of software engineering theo...
Foundation models(FMs) [1] have revolutionized software development and become the core components of large software systems. This paradigm shift, however, demands fundamental re-imagining of software engineering theories and methodologies [2]. Instead of replacing existing software modules implemented by symbolic logic, incorporating FMs' capabilities to build software systems requires entirely new modules that leverage the unique capabilities of ***, while FMs excel at handling uncertainty, recognizing patterns, and processing unstructured data, we need new engineering theories that support the paradigm shift from explicitly programming and maintaining user-defined symbolic logic to creating rich, expressive requirements that FMs can accurately perceive and implement.
Cloud computing has become increasingly popular due to its capacity to perform computations without relying on physical infrastructure,thereby revolutionizing computer ***,the rising energy consumption in cloud center...
详细信息
Cloud computing has become increasingly popular due to its capacity to perform computations without relying on physical infrastructure,thereby revolutionizing computer ***,the rising energy consumption in cloud centers poses a significant challenge,especially with the escalating energy *** paper tackles this issue by introducing efficient solutions for data placement and node management,with a clear emphasis on the crucial role of the Internet of Things(IoT)throughout the research *** IoT assumes a pivotal role in this study by actively collecting real-time data from various sensors strategically positioned in and around data *** sensors continuously monitor vital parameters such as energy usage and temperature,thereby providing a comprehensive dataset for *** data generated by the IoT is seamlessly integrated into the Hybrid TCN-GRU-NBeat(NGT)model,enabling a dynamic and accurate representation of the current state of the data center *** the incorporation of the Seagull Optimization Algorithm(SOA),the NGT model optimizes storage migration strategies based on the latest information provided by IoT *** model is trained using 80%of the available dataset and subsequently tested on the remaining 20%.The results demonstrate the effectiveness of the proposed approach,with a Mean Squared Error(MSE)of 5.33%and a Mean Absolute Error(MAE)of 2.83%,accurately estimating power prices and leading to an average reduction of 23.88%in power ***,the integration of IoT data significantly enhances the accuracy of the NGT model,outperforming benchmark algorithms such as DenseNet,Support Vector Machine(SVM),Decision Trees,and *** NGT model achieves an impressive accuracy rate of 97.9%,surpassing the rates of 87%,83%,80%,and 79%,respectively,for the benchmark *** findings underscore the effectiveness of the proposed method in optimizing energy efficiency and enhancing the predictive
In this study, the cloud computing platform is equipped with a hybrid multi-objective meta-heuristic optimization-based load balancing model. Physical Machine (PM) allocates a specific virtual machine (VM) depending o...
详细信息
In this study, the cloud computing platform is equipped with a hybrid multi-objective meta-heuristic optimization-based load balancing model. Physical Machine (PM) allocates a specific virtual machine (VM) depending on multiple criteria, such as the amount of memory used, migration expenses, power usage, and the load balancing settings, upon receiving a request to handle a cloud user's duties (‘Response time, Turnaround time, and Server load’). Additionally, the optimal virtual machine (VM) is chosen for efficient load balancing by utilizing the recently proposed hybrid optimization approach. The Cat and Mouse-Based Optimizer (CMBO) and Standard Dingo Optimizer (DXO) are conceptually blended together to get the proposed hybridization method known as Dingo Customized Cat mouse Optimization (DCCO). The developed method achieves the lowest server load in cloud environment 1 is 33.3%, 40%, 42.3%, 40.2%, 36.8%, 42.5%, 50%, 40.2%, 39.2% improved over MOA, ABC, CSO, SSO, SSA, ACSO, SMO, CMBO, BOA, DOX, and FF-PSO, respectively. Finally, the projected DCCO model has been evaluated in terms of makespan, memory usage, migration cost, response time, usage of power server load, turnaround time, throughput, and convergence. ABBREVIATION: CDC, cloud data center;CMODLB, Clustering-based Multiple Objective Dynamic Load Balancing As A Load Balancing;CSP, Cloud service providers;CSSA, Chaotic Squirrel Search Algorithm;DA, Dragonfly Algorithm;ED, Euclidean Distance;EDA-GA, Estimation Of Distribution Algorithm And GA;FF, FireFly algorithm;GA, Genetic Algorithm;HHO, Harris Hawk Optimization;IaaS, Infrastructure-as-a-Service;MGWO, Modified Mean Grey Wolf Optimization Algorithm;MMHHO, Mantaray modified multi-objective Harris Hawk optimization;MRFO, Manta Ray Forging Optimization;PaaS, Platform-as-a-Service;PM, Physical Machine;PSO, Particle Swarm Optimization;SaaS, Software-as-a-Service;SAW, Sample additive weighting;SLA-LB, Service Level Agreement-Based Load Balancing;TBTS, Threshold-Bas
Sign language is a form of visual communication used by individuals who are deaf or hard of hearing to communicate. This visual language relies on gestures, handshapes, facial expressions, and body movements to convey...
详细信息
暂无评论