咨询与建议

限定检索结果

文献类型

  • 107 篇 会议
  • 32 篇 期刊文献

馆藏范围

  • 139 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 87 篇 工学
    • 54 篇 计算机科学与技术...
    • 52 篇 软件工程
    • 27 篇 光学工程
    • 20 篇 信息与通信工程
    • 14 篇 机械工程
    • 14 篇 电子科学与技术(可...
    • 12 篇 生物医学工程(可授...
    • 10 篇 电气工程
    • 9 篇 仪器科学与技术
    • 9 篇 生物工程
    • 8 篇 控制科学与工程
    • 6 篇 建筑学
    • 5 篇 土木工程
    • 2 篇 动力工程及工程热...
    • 2 篇 化学工程与技术
    • 2 篇 交通运输工程
    • 2 篇 安全科学与工程
  • 62 篇 理学
    • 39 篇 物理学
    • 24 篇 数学
    • 11 篇 统计学(可授理学、...
    • 9 篇 生物学
    • 4 篇 系统科学
    • 2 篇 化学
    • 1 篇 地球物理学
  • 7 篇 医学
    • 7 篇 临床医学
    • 6 篇 基础医学(可授医学...
    • 6 篇 药学(可授医学、理...
  • 7 篇 管理学
    • 6 篇 图书情报与档案管...
    • 2 篇 管理科学与工程(可...
  • 3 篇 法学
    • 3 篇 社会学

主题

  • 18 篇 image segmentati...
  • 12 篇 computer vision
  • 10 篇 cameras
  • 9 篇 shape
  • 8 篇 image processing
  • 6 篇 magnetic resonan...
  • 6 篇 computed tomogra...
  • 6 篇 training
  • 5 篇 pixel
  • 5 篇 image edge detec...
  • 5 篇 histograms
  • 5 篇 color
  • 4 篇 image enhancemen...
  • 4 篇 probability dens...
  • 4 篇 object detection
  • 4 篇 support vector m...
  • 4 篇 visualization
  • 4 篇 feature extracti...
  • 4 篇 accuracy
  • 4 篇 robustness

机构

  • 15 篇 university of ch...
  • 13 篇 shenyang institu...
  • 10 篇 computer vision ...
  • 10 篇 institutes for r...
  • 7 篇 key laboratory o...
  • 7 篇 key lab of image...
  • 6 篇 the key lab of i...
  • 5 篇 key laboratory o...
  • 4 篇 computer and sys...
  • 4 篇 ihu strasbourg s...
  • 4 篇 computer vision ...
  • 4 篇 department of me...
  • 4 篇 peking universit...
  • 4 篇 key laboratory o...
  • 4 篇 heidelberg
  • 3 篇 university of sc...
  • 3 篇 university of pe...
  • 3 篇 department of co...
  • 3 篇 vector institute...
  • 3 篇 computer vision ...

作者

  • 13 篇 rajagopalan a.n.
  • 11 篇 aly a. farag
  • 6 篇 hossam abdelmuni...
  • 5 篇 reyes mauricio
  • 5 篇 abu-bakar s.a.r.
  • 5 篇 a.a. farag
  • 5 篇 haibo luo
  • 4 篇 khare ashish
  • 4 篇 bakas spyridon
  • 4 篇 zelensky a.
  • 4 篇 timofte radu
  • 4 篇 glocker ben
  • 4 篇 kofler florian
  • 4 篇 farag aly a.
  • 4 篇 suin maitreya
  • 4 篇 menze bjoern
  • 4 篇 zhao huaici
  • 4 篇 geovanni martine...
  • 4 篇 voronin v.
  • 3 篇 kreshuk anna

语言

  • 138 篇 英文
  • 1 篇 中文
检索条件"机构=Computer vision and Image processing lab"
139 条 记 录,以下是111-120 订阅
排序:
Fast Candidate Region Extraction for SAR Ship Target
Fast Candidate Region Extraction for SAR Ship Target
收藏 引用
Youth Academic Annual Conference of Chinese Association of Automation (YAC)
作者: Panpan Zhang Haibo Luo Zheng Xu Miao He Shenyang Institute of Automation Shenyang China Institutes for Robotics and Intelligent Manufacturing Shenyang China University of Chinese Academy of Sciences Beijing China Key Laboratory of Opto-Electronic Information Processing Shenyang China The Key Lab of Image Understanding and Computer Vision Shenyang China
At present, deep learning technology is widely used in ship target detection in synthetic aperture radar (SAR) images. However, high-resolution remote sensing SAR images cover a larger area and have larger image sizes... 详细信息
来源: 评论
RTM3D: Real-time monocular 3D detection from object keypoints for autonomous driving
arXiv
收藏 引用
arXiv 2020年
作者: Li, Peixuan Zhao, Huaici Liu, Pengfei Cao, Feidao Shenyang Institute of Automation Chinese Academy of Sciences Institutes for Robotics and Intelligent Manufacturing Chinese Academy of Sciences University of Chinese Academy of Sciences Key Laboratory of Opto-Electronic Information Processing Chinese Academy of Sciences Key Lab of Image Understanding and Computer Vision Liaoning Province
In this work, we propose an efficient and accurate monocular 3D detection framework in single shot. Most successful 3D detectors take the projection constraint from the 3D bounding box to the 2D box as an important co... 详细信息
来源: 评论
Variational approach for segmentation of lung nodules
Variational approach for segmentation of lung nodules
收藏 引用
IEEE International Conference on image processing
作者: Amal A. Farag Hossam Abdelmunim James Graham Aly A. Farag Salwa Elshazly Sabry El-Mogy Mohamed El-Mogy Robert Falk Sahar Al-Jafary Hani Mahdi Rebecca Milam Computer Vision and Image Processing Laboratory (CVIP Lab) University of Louisville Louisville KY USA Computer & Systems Engineering Department Faculty of Engineering Ain Shams University Cairo Egypt School of Medicine Mansoura University Egypt FJewish Hospital and 3DR Louisville KY USA Department of Radiology University of Louisville USA
Lung nodules from low dose CT (LDCT) scans may be used for early detection of lung cancer. However, these nodules vary in size, shape, texture, location, and may suffer from occlusion within the tissue. This paper pre... 详细信息
来源: 评论
Smart Cloud System for Forensic Thermal image Enhancement Using Local and Global Logarithmic Transform Histogram Matching
Smart Cloud System for Forensic Thermal Image Enhancement Us...
收藏 引用
IEEE International Conference on Smart Cloud (SmartCloud)
作者: Viacheslav Voronin Evgenii Semenishchev Vladimir Frants Sos Agaian Lab. “Mathematical methods of image processing and intelligent computer vision systems” Don State Technical University Rostov-on-Don Russian Federation “STANKIN” Moscow State University of Technology Moscow Russian Federation Dept. of Computer Science CUNY/The College of Staten Island Staten Island New York United States
Digital images used in the investigation of a crime often undergo several concurrent enhancement operations for improved automated analysis. The challenges are related to the big size of data and complexity of the for... 详细信息
来源: 评论
AIM 2019 challenge on real-world image super-resolution: Methods and results
arXiv
收藏 引用
arXiv 2019年
作者: Lugmayr, Andreas Danelljan, Martin Timofte, Radu Fritsche, Manuel Gu, Shuhang Purohit, Kuldeep Kandula, Praveen Suin, Maitreya Rajagopalan, A.N. Joon, Nam Hyung Won, Yu Seung Kim, Guisik Kwon, Dokyeong Hsu, Chih-Chung Lin, Chia-Hsiang Huang, Yuanfei Sun, Xiaopeng Lu, Wen Li, Jie Gao, Xinbo Bell-Kligler, Sefi Computer Vision Lab ETH Zurich Indian Institute Of Technology Madras India Image Communication & Signal Processing Laboratory Hanyang University Seoul Korea Republic of CVML Chung-Ang University Department Management Information Systems National Pingtung University of Science and Technology Department of Electrical Engineering National Cheng-Kung University Xidian University Weizmann Institute of Science Israel
This paper reviews the AIM 2019 challenge on real world super-resolution. It focuses on the participating methods and final results. The challenge addresses the real world setting, where paired true high and low-resol... 详细信息
来源: 评论
Blind Visual Quality Assessment for Smart Cloud-Based Video Storage
Blind Visual Quality Assessment for Smart Cloud-Based Video ...
收藏 引用
IEEE International Conference on Smart Cloud (SmartCloud)
作者: Vladimir Frants Viacheslav Voronin Alexander Zelenskiy Sos Agaian Metrological lab. “Small GIC” Moscow State University of Technology “STANKIN” Moscow Russian Federation Pro-rector for Research Work and R&D Politics Moscow State University of Technology “STANKIN” Moscow Russian Federation Lab. “Mathematical methods of image processing and intelligent computer vision systems.” Don State Technical University Rostov-on-Don Russian Federation Dept. of Computer Science CUNY The College of Staten Island Staten Island New York United States
In this paper, we present a new video quality metric targeted for use within cloud-based video storage systems. Because of the limited capacity of storage solutions currently in use, it is common for stored videos to ... 详细信息
来源: 评论
AIM 2020 Challenge on image Extreme Inpainting  16th
AIM 2020 Challenge on Image Extreme Inpainting
收藏 引用
Workshops held at the 16th European Conference on computer vision, ECCV 2020
作者: Ntavelis, Evangelos Romero, Andrés Bigdeli, Siavash Timofte, Radu Hui, Zheng Wang, Xiumei Gao, Xinbo Shin, Chajin Kim, Taeoh Son, Hanbin Lee, Sangyoun Li, Chao Li, Fu He, Dongliang Wen, Shilei Ding, Errui Bai, Mengmeng Li, Shuchen Zeng, Yu Lin, Zhe Yang, Jimei Zhang, Jianming Shechtman, Eli Lu, Huchuan Zeng, Weijian Ni, Haopeng Cai, Yiyang Li, Chenghua Xu, Dejia Wu, Haoning Han, Yu Nadim, Uddin S. M. Jang, Hae Woong Ahmed, Soikat Hasan Yoon, Jungmin Jung, Yong Ju Li, Chu-Tak Liu, Zhi-Song Wang, Li-Wen Siu, Wan-Chi Lun, Daniel P. K. Suin, Maitreya Purohit, Kuldeep Rajagopalan, A.N. Narang, Pratik Mandal, Murari Chauhan, Pranjal Singh Computer Vision Lab ETH Zürich Zürich Switzerland CSEM Neuchâtel Switzerland School of Electronic Engineering Xidian University Xi’an China Image and Video Pattern Recognition Laboratory School of Electrical and Electronic Engineering Yonsei University Seoul Korea Republic of Baidu Inc. Beijing China Beijing China Dalian University of Technology Dalian China Adobe San Jose United States Rensselaer Polytechnic Institute Troy United States Peking University Beijing China Lab Gachon University Seongnam Korea Republic of Centre for Multimedia Signal Processing Department of Electronic and Information Engineering The Hong Kong Polytechnic University Hong Kong China Indian Institute of Technology Madras Chennai India BITS Pilani Pilani India MNIT Jaipur Jaipur India
This paper reviews the AIM 2020 challenge on extreme image inpainting. This report focuses on proposed solutions and results for two different tracks on extreme image inpainting: classical image inpainting and semanti... 详细信息
来源: 评论
Fast and accurate single-image depth estimation on mobile devices, mobile AI 2021 challenge: Report
arXiv
收藏 引用
arXiv 2021年
作者: Ignatov, Andrey Malivenko, Grigory Plowman, David Shukla, Samarth Timofte, Radu Zhang, Ziyu Wang, Yicheng Huang, Zilong Luo, Guozhong Yu, Gang Fu, Bin Wang, Yiran Li, Xingyi Shi, Min Xian, Ke Cao, Zhiguo Du, Jin-Hua Wu, Pei-Lin Ge, Chao Yao, Jiaoyang Tu, Fangwen Li, Bo Yoo, Jung Eun Seo, Kwanggyoon Xu, Jialei Li, Zhenyu Liu, Xianming Jiang, Junjun Chen, Wei-Chi Joya, Shayan Fan, Huanhuan Kang, Zhaobing Li, Ang Feng, Tianpeng Liu, Yang Sheng, Chuannan Yin, Jian Benavides, Fausto T. Computer Vision Lab ETH Zurich Switzerland Ltd AI Witchlabs Switzerland Tencent GY-Lab China Key Laboratory of Image Processing and Intelligent Control Ministry of Education School of Artificial Intelligence and Automation Huazhong University of Science and Technology China Nanjing Artificial Intelligence Chip Research Institute of Automation Chinese Academy of Sciences China Black Sesame Technologies Inc. Singapore Singapore Visual Media Lab KAIST Korea Republic of Harbin Institute of Technology China Peng Cheng Laboratory China Multimedia and Computer Vision Laboratory National Cheng Kung University Taiwan Samsung Research UK United Kingdom OPPO Research Institute China ETH Zurich Switzerland
Depth estimation is an important computer vision problem with many practical applications to mobile devices. While many solutions have been proposed for this task, they are usually very computationally expensive and t... 详细信息
来源: 评论
image reconstruction using the modified texture synthesis algorithm
收藏 引用
IOP Conference Series: Materials Science and Engineering 2021年 第1期1029卷
作者: R R Ibadov N V Gapon S R Ibadov S V Kucheryavenko Southern Federal University Taganrog Russia Lab. 'Mathematical methods of image processing and intelligent computer vision systems' Don State Technical University Rostov-on-Don Russia
The article discusses a method for image reconstruction based on the search for similar blocks using a texture synthesis algorithm. The effectiveness of the new approach is shown using several examples for various are...
来源: 评论
Evaluation of dense 3D reconstruction from 2D face images in the wild
arXiv
收藏 引用
arXiv 2018年
作者: Feng, Zhen-Hua Huber, Patrik Kittler, Josef Hancock, Peter J.B. Wu, Xiao-Jun Zhao, Qijun Koppen, Paul Rätsch, Matthias Centre for Vision Speech and Signal Processing University of Surrey GuildfordGU2 7XH United Kingdom Faculty of Natural Sciences University of Stirling StirlingFK9 4LA United Kingdom School of Internet of Things Engineering Jiangnan University Wuxi214122 China Biometrics Research Lab College of Computer Science Sichuan University Chengdu610065 China Image Understanding and Interactive Robotics Reutlingen University Reutlingen72762 Germany
This paper investigates the evaluation of dense 3D face reconstruction from a single 2D image in the wild. To this end, we organise a competition that provides a new benchmark dataset that contains 2000 2D facial imag... 详细信息
来源: 评论