The agricultural sector is one of India's most important and major endeavors, and it is also critical to the country's economic development. Agriculture is one of the most important things that contributes to ...
详细信息
In this paper, we analyze the impact of vaccination on the dynamics of measles transmission using the SEIR mathematical model. We demonstrate that high vaccination coverage significantly reduces disease transmission a...
详细信息
Multi-beam low-Earth orbit (LEO) satellite communication is a promising solution for providing high data rate and wide area coverage. Therefore, satellite communication is introduced into Internet of Things (IoT) netw...
详细信息
Temporal knowledge graph(TKG) reasoning, has seen widespread use for modeling real-world events, particularly in extrapolation settings. Nevertheless, most previous studies are embedded models, which require both enti...
详细信息
Temporal knowledge graph(TKG) reasoning, has seen widespread use for modeling real-world events, particularly in extrapolation settings. Nevertheless, most previous studies are embedded models, which require both entity and relation embedding to make predictions, ignoring the semantic correlations among different entities and relations within the same timestamp. This can lead to random and nonsensical predictions when unseen entities or relations occur. Furthermore, many existing models exhibit limitations in handling highly correlated historical facts with extensive temporal depth. They often either overlook such facts or overly accentuate the relationships between recurring past occurrences and their current counterparts. Due to the dynamic nature of TKG, effectively capturing the evolving semantics between different timestamps can be *** address these shortcomings, we propose the recurrent semantic evidenceaware graph neural network(RE-SEGNN), a novel graph neural network that can learn the semantics of entities and relations simultaneously. For the former challenge, our model can predict a possible answer to missing quadruples based on semantics when facing unseen entities or relations. For the latter problem, based on an obvious established force, both the recency and frequency of semantic history tend to confer a higher reference value for the current. We use the Hawkes process to compute the semantic trend, which allows the semantics of recent facts to gain more attention than those of distant facts. Experimental results show that RE-SEGNN outperforms all SOTA models in entity prediction on 6 widely used datasets, and 5 datasets in relation prediction. Furthermore, the case study shows how our model can deal with unseen entities and relations.
Counterfeit artwork presents a significant risk to copyright holders and the economy. Without expertise in art, it is not straightforward to distinguish an artwork counterfeit from a genuine piece. This work designs a...
详细信息
With the spread of open-ear earphones that do not cover the ear, new listening experiences are being proposed that combines real ambient sounds with virtual sounds heard from earphones. At NTT, we call this merging of...
详细信息
Age-related Macular Degeneration (AMD) is the most common eye disease that causes visual impairment in elder people. Prevalently, AMD is detected by Spectral Domain Optical Coherence Tomography (SD-OCT) for diagnosis ...
详细信息
Demand prediction for shared bicycles based on historical trip data helps bicycle management organizations plan the scheduling of bicycles. However, the current prediction methods have the following problems: (1) the ...
详细信息
Container-based virtualization isbecoming increasingly popular in cloud computing due to its efficiency and *** isolation is a fundamental property of *** works have indicated weak resource isolation could cause signi...
详细信息
Container-based virtualization isbecoming increasingly popular in cloud computing due to its efficiency and *** isolation is a fundamental property of *** works have indicated weak resource isolation could cause significant performance degradation for containerized applications and enhanced resource ***,current studies have almost not discussed the isolation problems of page cache which is a key resource for *** leverage memory cgroup to control page cache ***,existing policy introduces two major problems in a container-based ***,containers can utilize more memory than limited by their cgroup,effectively breaking memory ***,the Os kernel has to evict page cache to make space for newly-arrived memory requests,slowing down containerized *** paper performs an empirical study of these problems and demonstrates the performance impacts on containerized *** we propose pCache(precise control of page cache)to address the problems by dividing page cache into private and shared and controlling both kinds of page cache separately and *** do so,pCache leverages two new technologies:fair account(f-account)and evict on demand(EoD).F-account splits the shared page cache charging based on per-container share to prevent containers from using memory for free,enhancing memory *** EoD reduces unnecessary page cache evictions to avoid the performance *** evaluation results demonstrate that our system can effectively enhance memory isolation for containers and achieve substantial performance improvement over the original page cache management policy.
Deep neural networks have long been criticized for being black-box. To unveil the inner workings of modern neural architectures, a recent work [45] proposed an information-theoretic objective function called Sparse Ra...
暂无评论