咨询与建议

限定检索结果

文献类型

  • 686 篇 会议
  • 474 篇 期刊文献
  • 10 册 图书

馆藏范围

  • 1,170 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 708 篇 工学
    • 387 篇 计算机科学与技术...
    • 342 篇 软件工程
    • 195 篇 控制科学与工程
    • 160 篇 电气工程
    • 117 篇 信息与通信工程
    • 108 篇 机械工程
    • 84 篇 电子科学与技术(可...
    • 67 篇 生物工程
    • 66 篇 生物医学工程(可授...
    • 54 篇 动力工程及工程热...
    • 52 篇 光学工程
    • 46 篇 仪器科学与技术
    • 33 篇 交通运输工程
    • 27 篇 化学工程与技术
    • 22 篇 力学(可授工学、理...
    • 20 篇 材料科学与工程(可...
    • 20 篇 航空宇航科学与技...
    • 20 篇 安全科学与工程
  • 353 篇 理学
    • 167 篇 数学
    • 97 篇 物理学
    • 79 篇 系统科学
    • 73 篇 生物学
    • 45 篇 统计学(可授理学、...
    • 35 篇 化学
  • 169 篇 管理学
    • 119 篇 管理科学与工程(可...
    • 53 篇 图书情报与档案管...
    • 47 篇 工商管理
  • 49 篇 医学
    • 42 篇 临床医学
    • 34 篇 基础医学(可授医学...
    • 28 篇 药学(可授医学、理...
  • 17 篇 法学
  • 16 篇 经济学
  • 6 篇 农学
  • 5 篇 教育学
  • 4 篇 艺术学
  • 2 篇 文学
  • 1 篇 军事学

主题

  • 29 篇 mathematical mod...
  • 27 篇 control systems
  • 23 篇 neural networks
  • 22 篇 automation
  • 21 篇 robustness
  • 20 篇 laboratories
  • 18 篇 image segmentati...
  • 17 篇 cellular neural ...
  • 17 篇 optimization
  • 16 篇 reinforcement le...
  • 16 篇 computational mo...
  • 16 篇 automatic contro...
  • 16 篇 computer network...
  • 15 篇 computer archite...
  • 15 篇 machine learning
  • 14 篇 semantics
  • 14 篇 nonlinear system...
  • 14 篇 artificial intel...
  • 14 篇 sensors
  • 13 篇 predictive model...

机构

  • 29 篇 department of au...
  • 22 篇 department of au...
  • 21 篇 school of automa...
  • 20 篇 college of compu...
  • 19 篇 institute of aut...
  • 16 篇 school of automa...
  • 16 篇 school of artifi...
  • 14 篇 school of automa...
  • 13 篇 department of au...
  • 13 篇 shanghai united ...
  • 12 篇 infn sezione di ...
  • 12 篇 north-west unive...
  • 12 篇 school of biomed...
  • 12 篇 institut univers...
  • 12 篇 université de st...
  • 12 篇 department of co...
  • 12 篇 ncsr demokritos ...
  • 12 篇 infn sezione di ...
  • 12 篇 infn sezione di ...
  • 12 篇 comenius univers...

作者

  • 39 篇 niyato dusit
  • 36 篇 kang jiawen
  • 21 篇 zhu dajiang
  • 21 篇 liu zhengliang
  • 21 篇 li xiang
  • 21 篇 du hongyang
  • 20 篇 liu tianming
  • 19 篇 xiong zehui
  • 18 篇 wu zihao
  • 16 篇 ma chong
  • 16 篇 shen dinggang
  • 15 篇 gang xiong
  • 14 篇 jiang xi
  • 14 篇 dai haixing
  • 14 篇 peng shi
  • 12 篇 chen a.
  • 12 篇 benoit d.m.
  • 12 篇 ferrara g.
  • 12 篇 ardid m.
  • 12 篇 calvo d.

语言

  • 1,077 篇 英文
  • 83 篇 其他
  • 12 篇 中文
检索条件"机构=Computing Engineering and Automation Department"
1170 条 记 录,以下是431-440 订阅
排序:
Exploring the Trade-Offs: Unified Large Language Models vs Local Fine-Tuned Models for Highly-Specific Radiology NLI Task
arXiv
收藏 引用
arXiv 2023年
作者: Wu, Zihao Zhang, Lu Cao, Chao Yu, Xiaowei Dai, Haixing Ma, Chong Liu, Zhengliang Zhao, Lin Li, Gang Liu, Wei Li, Quanzheng Shen, Dinggang Li, Xiang Zhu, Dajiang Liu, Tianming School of Computing The University of Georgia Athens30602 United States Department of Computer Science and Engineering The University of Texas at Arlington Arlington76019 United States School of Automation Northwestern Polytechnical University Xi’an710072 China Department of Radiology and BRIC University of North Carolina Chapel Hill Chapel Hill27599 United States Department of Radiation Oncology Mayo Clinic Phoenix85054 United States Department of Radiology Massachusetts General Hospital Harvard Medical School Boston02115 United States School of Biomedical Engineering ShanghaiTech University Shanghai201210 China Shanghai United Imaging Intelligence Co. Ltd. Shanghai200230 China Shanghai Clinical Research and Trial Center Shanghai201210 China
Recently, ChatGPT and GPT-4 have emerged and gained immense global attention due to their unparalleled performance in language processing. Despite demonstrating impressive capability in various open-domain tasks, thei... 详细信息
来源: 评论
Correlating the Effect of Covid-19 Lockdown with Mobility Impacts: A Time Series Study Using Noise Sensors Data
收藏 引用
Transportation Research Procedia 2022年 62卷 115-122页
作者: Antonio Pascale Simona Mancini Pedro M. d’Orey Claudio Guarnaccia Margarida C. Coelho Centre for Mechanical Technology and Automation Dept. of Mechanical Engineering University of Aveiro Campus Universitário de Santiago 3801-193 Aveiro Portugal Department of Information and Electric Engineering and Applied Mathematics University of Salerno Via Giovanni Paolo II 132 I-84084 Fisciano Italy Real-Time and Embedded Computing Systems Research Centre (CISTER) ISEP IPP Rua Dr. António Bernardino de Almeida 431 4200-072 Porto Portugal Dept. of Civil Engineering University of Salerno Via Giovanni Paolo II 132 I-84084 Fisciano Italy
The Covid-19 crisis forced governments around the world to rapidly enact several restrictions to face the associated health emergency. The Portuguese government was no exception and, following the example of other cou... 详细信息
来源: 评论
Scaling Solar Photocatalytic Hydrogen Production in China: Integrated Geospatial-Meteorological Analysis
SSRN
收藏 引用
SSRN 2024年
作者: Li, Yinan Li, Lanyu Yuan, Hongkuan He, Keji Chen, Hong Xie, Jianping Wang, Biao Wang, Xiaonan School of Physical Science and Technology Southwest University Chongqing400715 China Department of Chemical and Biomolecular Engineering National University of Singapore Singapore117585 Singapore Department of Chemical Engineering Tsinghua University Beijing100084 China China Oilfield Services Limited Yanjiao065201 China Center for Research on Intelligent Perception and Computing National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences Beijing100190 China School of Artificial Intelligence University of Chinese Academy of Sciences Beijing101408 China School of Resources and Environment Institute of Fundamental and Frontier Science University of Electronic Science and Technology of China Chengdu611731 China Chongqing key Laboratory of Micro Nano Structure Optoelectronics School of Physical Science and Technology Southwest University Chongqing400715 China
Solar photocatalytic hydrogen production is considered a promising technology owing to its sustainable nature, while facing the challenges of improving and maintaining photocatalytic efficiency under prolonged variabl... 详细信息
来源: 评论
ChatABL: Abductive Learning via Natural Language Interaction with ChatGPT
arXiv
收藏 引用
arXiv 2023年
作者: Zhong, Tianyang Wei, Yaonai Yang, Li Wu, Zihao Liu, Zhengliang Wei, Xiaozheng Li, Wenjun Yao, Junjie Ma, Chong Li, Xiang Zhu, Dajiang Jiang, Xi Han, Junwei Shen, Dinggang Liu, Tianming Zhang, Tuo School of Automation Northwestern Polytechnical University Xi'An710072 China School of Computing The University of Georgia Athens30602 United States Department of Radiology Massachusetts General Hospital Harvard Medical School Boston02115 United States Department of Computer Science and Engineering The University of Texas at Arlington Arlington76019 United States School of Biomedical Engineering ShanghaiTech University Shanghai201210 China Shanghai United Imaging Intelligence Co. Ltd. Shanghai200230 China Shanghai Clinical Research and Trial Center Shanghai201210 China School of life science and technology University of Electronic Science and Technology of China Chengdu611731 China
Large language models (LLMs) such as ChatGPT have recently demonstrated significant potential in mathematical abilities, providing valuable reasoning paradigm consistent with human natural language. However, LLMs curr... 详细信息
来源: 评论
A Kind of Lean Approach for Removing Wastes From Non-Manufacturing Process With Various Facilities
收藏 引用
IEEE/CAA Journal of Automatica Sinica 2019年 第1期6卷 307-315页
作者: Guangyu Xiong Xiuqin Shang Gang Xiong Timo R.Nyberg IEEE the Silk Road Business School Sanya University the Department of Industrial Engineering and Management School of ScienceAalto University the State Key Laboratory for Management and Controlof Complex Systems Institute of AutomationChinese Academy of Sciences(CAS) Qingdao Academy of Intelligent Industries the Cloud Computing Center CAS the Beijing Engineering Research Center of Intelligent Systems and Technology Institute of AutomationCAS the School of Science at Aalto University
It is important to identify and remove the wastes not only from manufacturing process, but also from nonmanufacturing process. In the last several decades, significant research achievements and practice benefits have ... 详细信息
来源: 评论
Model-free design of stochastic lqr controller from reinforcement learning and primal-dual optimization perspective
arXiv
收藏 引用
arXiv 2021年
作者: Li, Man Qin, Jiahu Zheng, Wei Xing Wang, Yaonan Kang, Yu Department of Automation University of Science and Technology of China Hefei230027 China School of Computing Engineering and Mathematics Western Sydney University SydneyNSW2751 Australia College of Electrical and Information Engineering Hunan University Changsha410082 China National Engineering Laboratory for Robot Visual Perception and Control Technology Changsha410082 China
To further understand the underlying mechanism of various reinforcement learning (RL) algorithms and also to better use the optimization theory to make further progress in RL, many researchers begin to revisit the lin... 详细信息
来源: 评论
Comparative evaluation of training schemes for the locally recurrent probabilistic neural network  28
Comparative evaluation of training schemes for the locally r...
收藏 引用
28th International Scientific Conference Electronics, ET 2019 - Proceedings
作者: Dukov, Nikolay Tinkov Ganchev, Todor Dimitrov Department of Computer Science and Engineering Faculty of Computing and Automation Technical University of Varna 1 Studentska str. Varna9000 Bulgaria
In the present study we evaluate the performance of various training schemes for the locally recurrent probabilistic neural network and seek for advantageous tradeoffs between required training time and classification... 详细信息
来源: 评论
Boosting Personalised Musculoskeletal Modelling with Physics-informed Knowledge Transfer
arXiv
收藏 引用
arXiv 2022年
作者: Zhang, Jie Zhao, Yihui Bao, Tianzhe Li, Zhenhong Qian, Kun Frangi, Alejandro F. Xie, Sheng Quan Zhang, Zhi-Qiang The School of Electronic and Electrical Engineering University of Leeds LeedsLS2 9JT United Kingdom The School of Automation and Electrical Engineering University of Science and Technology Beijing Beijing100083 China The School of Rehabilitation Sciences and Engineering University of Health and Rehabilitation Sciences Qingdao261000 China The School of Computing University of Leeds LeedsLS2 9JT United Kingdom The Alan Turing Institute LondonNW1 2DB United Kingdom The Department of Electrical Engineering KU Leuven Leuven3000 Belgium
Data-driven methods have become increasingly more prominent for musculoskeletal modelling due to their conceptually intuitive simple and fast implementation. However, the performance of a pre-trained data-driven model... 详细信息
来源: 评论
Wireless Large AI Model: Shaping the AI-Native Future of 6G and Beyond
arXiv
收藏 引用
arXiv 2025年
作者: Zhu, Fenghao Wang, Xinquan Li, Xinyi Zhang, Maojun Chen, Yixuan Huang, Chongwen Yang, Zhaohui Chen, Xiaoming Zhang, Zhaoyang Jin, Richeng Huang, Yongming Feng, Wei Yang, Tingting Bai, Baoming Gao, Feifei Yang, Kun Liu, Yuanwen Muhaidat, Sami Yuen, Chau Huang, Kaibin Wong, Kai-Kit Niyato, Dusit Debbah, Mérouane College of Information Science and Electronic Engineering Zhejiang University Hangzhou310027 China School of Automation Southeast University Nanjing210096 China Tsinghua University Beijing100084 China Pengcheng Laboratory Shenzhen518066 China State Key Laboratory of Integrated Service Networks Xidian University Xi’an710071 China State Key Laboratory of Novel Software Technology Nanjing University Nanjing210008 China Suzhou215163 China The University of Hong Kong Hong Kong KU 6G Research Center Computer and Communication Engineering Khalifa University Abu Dhabi127788 United Arab Emirates School of Electrical and Electronic Engineering Nanyang Technological University Singapore Singapore Department of Electronic and Electrical Engineering University College London LondonWC1E 7JE United Kingdom College of Computing and Data Science Nanyang Technological University Singapore639798 Singapore KU 6G Research Center Department of Computer and Information Engineering Khalifa University Abu Dhabi127788 United Arab Emirates
The emergence of sixth-generation and beyond communication systems is expected to fundamentally transform digital experiences through introducing unparalleled levels of intelligence, efficiency, and connectivity. A pr... 详细信息
来源: 评论
A Learning Convolutional Neural Network Approach for Network Robustness Prediction
arXiv
收藏 引用
arXiv 2022年
作者: Lou, Yang Wu, Ruizi Li, Junli Wang, Lin Li, Xiang Chen, Guanrong The Department of Computing and Decision Sciences Lingnan University Hong Kong The Key Laboratory of System Control and Information Processing Ministry of Education of China Shanghai200240 China The College of Computer Science Sichuan Normal University Chengdu610066 China The Department of Automation Shanghai Jiao Tong University Shanghai200240 China The Institute of Complex Networks and Intelligent Systems Shanghai Research Institute for Intelligent Autonomous Systems Tongji University Shanghai201210 China The Department of Control Science and Engineering Tongji University Shanghai200240 China The Department of Electrical Engineering City University of Hong Kong Hong Kong
Network robustness is critical for various societal and industrial networks again malicious attacks. In particular, connectivity robustness and controllability robustness reflect how well a networked system can mainta... 详细信息
来源: 评论