咨询与建议

限定检索结果

文献类型

  • 686 篇 会议
  • 474 篇 期刊文献
  • 10 册 图书

馆藏范围

  • 1,170 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 708 篇 工学
    • 387 篇 计算机科学与技术...
    • 342 篇 软件工程
    • 195 篇 控制科学与工程
    • 160 篇 电气工程
    • 117 篇 信息与通信工程
    • 108 篇 机械工程
    • 84 篇 电子科学与技术(可...
    • 67 篇 生物工程
    • 66 篇 生物医学工程(可授...
    • 54 篇 动力工程及工程热...
    • 52 篇 光学工程
    • 46 篇 仪器科学与技术
    • 33 篇 交通运输工程
    • 27 篇 化学工程与技术
    • 22 篇 力学(可授工学、理...
    • 20 篇 材料科学与工程(可...
    • 20 篇 航空宇航科学与技...
    • 20 篇 安全科学与工程
  • 353 篇 理学
    • 167 篇 数学
    • 97 篇 物理学
    • 79 篇 系统科学
    • 73 篇 生物学
    • 45 篇 统计学(可授理学、...
    • 35 篇 化学
  • 169 篇 管理学
    • 119 篇 管理科学与工程(可...
    • 53 篇 图书情报与档案管...
    • 47 篇 工商管理
  • 49 篇 医学
    • 42 篇 临床医学
    • 34 篇 基础医学(可授医学...
    • 28 篇 药学(可授医学、理...
  • 17 篇 法学
  • 16 篇 经济学
  • 6 篇 农学
  • 5 篇 教育学
  • 4 篇 艺术学
  • 2 篇 文学
  • 1 篇 军事学

主题

  • 29 篇 mathematical mod...
  • 27 篇 control systems
  • 23 篇 neural networks
  • 22 篇 automation
  • 21 篇 robustness
  • 20 篇 laboratories
  • 18 篇 image segmentati...
  • 17 篇 cellular neural ...
  • 17 篇 optimization
  • 16 篇 reinforcement le...
  • 16 篇 computational mo...
  • 16 篇 automatic contro...
  • 16 篇 computer network...
  • 15 篇 computer archite...
  • 15 篇 machine learning
  • 14 篇 semantics
  • 14 篇 nonlinear system...
  • 14 篇 artificial intel...
  • 14 篇 sensors
  • 13 篇 predictive model...

机构

  • 29 篇 department of au...
  • 22 篇 department of au...
  • 21 篇 school of automa...
  • 20 篇 college of compu...
  • 19 篇 institute of aut...
  • 16 篇 school of automa...
  • 16 篇 school of artifi...
  • 14 篇 school of automa...
  • 13 篇 department of au...
  • 13 篇 shanghai united ...
  • 12 篇 infn sezione di ...
  • 12 篇 north-west unive...
  • 12 篇 school of biomed...
  • 12 篇 institut univers...
  • 12 篇 université de st...
  • 12 篇 department of co...
  • 12 篇 ncsr demokritos ...
  • 12 篇 infn sezione di ...
  • 12 篇 infn sezione di ...
  • 12 篇 comenius univers...

作者

  • 39 篇 niyato dusit
  • 36 篇 kang jiawen
  • 21 篇 zhu dajiang
  • 21 篇 liu zhengliang
  • 21 篇 li xiang
  • 21 篇 du hongyang
  • 20 篇 liu tianming
  • 19 篇 xiong zehui
  • 18 篇 wu zihao
  • 16 篇 ma chong
  • 16 篇 shen dinggang
  • 15 篇 gang xiong
  • 14 篇 jiang xi
  • 14 篇 dai haixing
  • 14 篇 peng shi
  • 12 篇 chen a.
  • 12 篇 benoit d.m.
  • 12 篇 ferrara g.
  • 12 篇 ardid m.
  • 12 篇 calvo d.

语言

  • 1,077 篇 英文
  • 83 篇 其他
  • 12 篇 中文
检索条件"机构=Computing Engineering and Automation Department"
1170 条 记 录,以下是501-510 订阅
排序:
Dynamics and Resonance Fluorescence from a Superconducting Artificial Atom Doubly Driven by Quantized and Classical Fields
arXiv
收藏 引用
arXiv 2024年
作者: Ruan, Xinhui Wang, Jia-Heng He, Dong Song, Pengtao Li, Shengyong Zhao, Qianchuan Kuang, L.M. Tsai, Jaw-Shen Zou, Chang-Ling Zhang, Jing Zheng, Dongning Astafiev, O.V. Liu, Yu-Xi Peng, Zhihui Department of Automation Tsinghua University Beijing100084 China Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education Department of Physics and Synergetic Innovation Center of Quantum Effects and Applications Hunan Normal University Changsha410081 China School of Integrated Circuits Tsinghua University Beijing100084 China Institute of Physics Chinese Academy of Sciences Beijing100190 China School of Physical Sciences University of Chinese Academy of Sciences Beijing100190 China Center for Quantum Computing RIKEN Saitama351-0198 Japan Graduate School of Science Tokyo University of Science 1-3 Kagurazaka Shinjuku Tokyo162-0825 Japan CAS Key Laboratory of Quantum Information University of Science and Technology of China Hefei Anhui230026 China Hefei National Laboratory Hefei230088 China School of Automation Science and Engineering Xi'an Jiaotong University Xi’an710049 China MOE Key Lab for Intelligent Networks and Network Security Xi'an Jiaotong University Xi’an710049 China Skolkovo Institute of Science and Technology Nobel str. 3 Moscow143026 Russia Moscow Institute of Physics and Technology Institutskiy Pereulok 9 Dolgoprudny141701 Russia Royal Holloway University of London Surrey EghamTW20 0EX United Kingdom
We report an experimental demonstration of resonance fluorescence in a two-level superconducting artificial atom under two driving fields coupled to a detuned cavity. One of the fields is classical and the other is va... 详细信息
来源: 评论
Any equation is a forest: Symbolic genetic algorithm for discovering open-form partial differential equations (SGA-PDE)
arXiv
收藏 引用
arXiv 2021年
作者: Chen, Yuntian Luo, Yingtao Liu, Qiang Xu, Hao Zhang, Dongxiao Intelligent Energy Laboratory Frontier Research Center Peng Cheng Laboratory Shenzhen China Department of Computer Science University of Washington SeattleWA United States Center for Research on Intelligent Perception and Computing Institute of Automation Chinese Academy of Sciences Beijing China School of Artificial Intelligence University of Chinese Academy of Sciences Beijing China BIC-ESAT ERE and SKLTCS College of Engineering Peking University Beijing China School of Environmental Science and Engineering Southern University of Science and Technology Shenzhen China
Partial differential equations (PDEs) are concise and understandable representations of domain knowledge, which are essential for deepening our understanding of physical processes and predicting future responses. Howe... 详细信息
来源: 评论
LMS-Net: A learned Mumford-Shah network for binary few-shot medical image segmentation
收藏 引用
Medical Image Analysis 2025年
作者: Shengdong Zhang Fan Jia Xiang Li Hao Zhang Jun Shi Liyan Ma Shihui Ying Department of Mathematics School of Science Shanghai University Shanghai 200444 China Department of Mathematics and Scientific Computing and Imaging (SCI) Institute University of Utah Salt Lake City 84102 UT USA School of Computer Science and Technology East China Normal University Shanghai 200444 China School of Communication and Information Engineering Shanghai University Shanghai 200444 China School of Computer Engineering and Science Shanghai University Shanghai 200444 China School of Mechatronic Engineering and Automation Shanghai Key Laboratory of Intelligent Manufacturing and Robotics Shanghai University Shanghai 200444 China Shanghai Institute of Applied Mathematics and Mechanics Shanghai 200072 China School of Mechanics and Engineering Science Shanghai University Shanghai 200072 China
Few-shot semantic segmentation (FSS) methods have shown great promise in handling data-scarce scenarios, particularly in medical image segmentation tasks. However, most existing FSS architectures lack sufficient inter...
来源: 评论
Efficient visual recognition with deep neural networks: A survey on recent advances and new directions
arXiv
收藏 引用
arXiv 2021年
作者: Wu, Yang Wang, Dingheng Lu, Xiaotong Yang, Fan Li, Guoqi Dong, Weisheng Shi, Jianbo Institute for Research Initiatives Nara Institute of Science and Technology Takayama-cho Ikoma Nara630-0192 Japan School of Automation Science and Engineering Faculty of Electronic and Information Engineering Xi'An Jiaotong University Shaanxi Xi'an710049 China School of Artificial Intelligence Xidian University China Division of Information Science Nara Institute of Science and Technology Japan Department of Precision Instrumentation Center for Brain Inspired Computing Research Beijing Innovation Center for Future Chip Tsinghua University Beijing100084 China Department of Computer and Information Science University of Pennsylvania United States
Visual recognition is currently one of the most important and active research areas in computer vision, pattern recognition, and even the general field of artificial intelligence. It has great fundamental importance a... 详细信息
来源: 评论
Learning data-adaptive non-parametric kernels
The Journal of Machine Learning Research
收藏 引用
The Journal of Machine Learning Research 2020年 第1期21卷 8590-8628页
作者: Fanghui Liu Xiaolin Huang Chen Gong Jie Yang Li Li Department of Electrical Engineering ESAT-STADIUS KU Leuven Belgium Institute of Image Processing and Pattern Recognition Institute of Medical Robotics Shanghai Jiao Tong University Shanghai China PCA Lab Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education School of Computer Science and Engineering Nanjing University of Science and Technology China and Department of Computing Hong Kong Polytechnic University Hong Kong SAR China Department of Automation BNRist Tsinghua University China
In this paper, we propose a data-adaptive non-parametric kernel learning framework in margin based kernel methods. In model formulation, given an initial kernel matrix, a data-adaptive matrix with two constraints is i... 详细信息
来源: 评论
ChatRadio-Valuer: A Chat Large Language Model for Generalizable Radiology Report Generation Based on Multi-institution and Multi-system Data
arXiv
收藏 引用
arXiv 2023年
作者: Zhong, Tianyang Zhao, Wei Zhang, Yutong Pan, Yi Dong, Peixin Jiang, Zuowei Kui, Xiaoyan Shang, Youlan Yang, Li Wei, Yaonai Yang, Longtao Chen, Hao Zhao, Huan Liu, Yuxiao Zhu, Ning Li, Yiwei Wang, Yisong Yao, Jiaqi Wang, Jiaqi Zeng, Ying He, Lei Zheng, Chao Zhang, Zhixue Li, Ming Liu, Zhengliang Dai, Haixing Wu, Zihao Zhang, Lu Zhang, Shu Cai, Xiaoyan Hu, Xintao Zhao, Shijie Jiang, Xi Zhang, Xin Li, Xiang Zhu, Dajiang Guo, Lei Shen, Dinggang Han, Junwei Liu, Tianming Liu, Jun Zhang, Tuo School of Automation Northwestern Polytechnical University Xi’an710072 China The Second Xiangya Hospital Central South University Changsha410011 China Clinical Research Center for Medical Imaging in Hunan Province Changsha China Institute of Biomedical and Health Engineering Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen518055 China Institute of Medical Research Northwestern Polytechnical University Xi’an710072 China Glasgow College University of Electronic Science and Technology of China Chengdu611731 China School of Life Science and Technology University of Electronic Science and Technology of China Chengdu611731 China School of Computer Science and Engineering Central South University Hunan Province Changsha410083 China School of Biomedical Engineering ShanghaiTech University Shanghai201210 China Lingang Laboratory Shanghai200031 China Imaging Center The Second Affiliated Hospital of Xinjiang Medical University Urumuqi830000 China School of Computer Science Northwestern Polytechnical University Xi’an710072 China Department of Radiology Xiangtan Central Hospital Xiangtan411199 China Department of Radiology Yueyang Central Hospital City Yueyang414000 China Department of Radiology The First People's Hospital of Changde City Changde415003 China Department of Radiology The First Hospital of Hunan University of Chinese Medicine Changsha410021 China Department of Radiology Huadong Hospital Affiliated to Fudan University Shanghai200040 China School of Computing University of Georgia GA United States Department of Computer Science and Engineering University of Texas ArlingtonTX United States Department of Radiology Massachusetts General Hospital Harvard Medical School MA United States Shanghai United Imaging Intelligence Co. Ltd. China Shanghai Clinical Research and Trial Center China
Radiology report generation, as a key step in medical image analysis, is critical to the quantitative analysis of clinically informed decision-making levels. However, complex and diverse radiology reports with cross-s... 详细信息
来源: 评论
SiNED-ancillary services for reliable power grids in times of progressive German energiewende and digital transformation
SiNED-ancillary services for reliable power grids in times o...
收藏 引用
ETG-Kongress 2021: Von Komponenten bis zum Gesamtsystem fur die Energiewende - ETG Congress 2021: From Components to the Overall System for the Energy Turnaround
作者: Wussow, Jonas Babazadeh, Davood Beutel, Vanessa Buchholz, Sebastian Geissendörfer, Stefan Gerlach, Jana Majumdar, Neelopal von Maydell, Karsten Narayan, Anand Hoffmann, Melanie Kahl, Lily Leveringhaus, Thomas Lotz, Marc René Scheunert, Alexandra Baboli, Payam Teimourzadeh Tiemann, Paul Hendrik Huxoll, Nils Werth, Oliver Agert, Carsten Breitner, Michael H. Engel, Bernd Hofmann, Lutz Könemund, Martin Kurrat, Michael Lehnhoff, Sebastian Nieße, Astrid Weyer, Hartmut Technische Universität Braunschweig Elenia Institute for High Voltage Technology and Power Systems Braunschweig Germany Carl von Ossietzky Universität Oldenburg Department of Computing Science Digitalized Energy Systems Group Oldenburg Germany German Aerospace Center Institute of Networked Energy Systems Oldenburg Germany Leibniz Universität Hannover Institute of Computer Science for Business Administration Hannover Germany Leibniz Universität Hannover Institute of Electric Power Systems Electric Power Engineering Section Hannover Germany OFFIS Institute for Information Technology Oldenburg Germany Ostfalia - University of Applied Science Institute of Electrical Systems and Automation Technology Wolfenbüttel Germany Technische Universität Clausthal Institute of German and International Mining and Energy Law Clausthal-Zellerfeld Germany
Within SiNED research project, several members of the Energy Research Centre of Lower Saxony (Energieforschungszentrum Niedersachsen, EFZN) are working on various issues relating to the future provision of ancillary s... 详细信息
来源: 评论
On Design of H∞ Structured Controller for Decentralized Control systems
On Design of H∞ Structured Controller for Decentralized Con...
收藏 引用
Control Conference (ANZCC), Australian and New Zealand
作者: Yanpeng Guan Wei Xing Zheng Department of Automation Shanxi University Taiyuan China School of Computing Engineering and Mathematics Western Sydney University Sydney Australia
In this paper the problem of H ∞ structured controller design is addressed. The considered problem arises when selection of actuators in decentralized control systems leads to that some rows of the controller gain m... 详细信息
来源: 评论
From video game to real robot: The transfer between action spaces
arXiv
收藏 引用
arXiv 2019年
作者: Karttunen, Janne Kanervisto, Anssi Hautamäki, Ville Kyrki, Ville School of Computing University of Eastern Finland Joensuu Finland Department of Electrical Engineering and Automation Aalto University Espoo Finland
Training agents with reinforcement learning based techniques requires thousands of steps, which translates to long training periods when applied to robots. By training the policy in a simulated environment we avoid su... 详细信息
来源: 评论
Channel pruning via automatic structure search
arXiv
收藏 引用
arXiv 2020年
作者: Lin, Mingbao Ji, Rongrong Zhang, Yuxin Zhang, Baochang Wu, Yongjian Tian, Yonghong Media Analytics and Computing Laboratory Department of Artificial Intelligence School of Informatics Xiamen University China School of Automation Science and Electrical Engineering Beihang University China Co. Ltd China School of Electronics Engineering and Computer Science Peking University Beijing China Peng Cheng Laboratory Shenzhen China
Channel pruning is among the predominant approaches to compress deep neural networks. To this end, most existing pruning methods focus on selecting channels (filters) by importance/ optimization or regularization base... 详细信息
来源: 评论