The creation of the 3D rendering model involves the prediction of an accurate depth map for the input images.A proposed approach of a modified semi-global block matching algorithm with variable window size and the gra...
详细信息
The creation of the 3D rendering model involves the prediction of an accurate depth map for the input images.A proposed approach of a modified semi-global block matching algorithm with variable window size and the gradient assessment of objects predicts the depth map.3D modeling and view synthesis algorithms could effectively handle the obtained disparity *** work uses the consistency check method to find an accurate depth map for identifying occluded *** prediction of the disparity map by semi-global block matching has used the benchmark dataset of Middlebury stereo for *** improved depth map quality within a reasonable process-ing time outperforms the other existing depth map prediction *** experimental results have shown that the proposed depth map predictioncould identify the inter-object boundaryeven with the presence ofocclusion with less detection error and *** observed that the Middlebury stereo dataset has very few images with occluded objects,which made the attainment of gain *** this gain,we have created our dataset with occlu-sion using the structured lighting *** proposed regularization term as an optimization process in the graph cut algorithm handles occlusion for different smoothing *** experimented results demonstrated that our dataset had outperformed the Tsukuba dataset regarding the percentage of occluded pixels.
As the world shifts from fossil fuels to renewable energy, solar power has become essential in meeting global energy demands. The efficiency of solar energy depends on effectively capturing the environmental and physi...
详细信息
In order to effectively prevent and control accidents, it is essential to trace back the causes of gas explosions in cities. The DT-AR(decision tree-association rule) algorithm is proposed as a quantitative analysis o...
详细信息
Nighttime detection of pedestrians brings important problems such as low light conditions, limitations of sensors, and environmental noise. To tackle this problem, in this study, we propose a novel visual-radar data f...
详细信息
作者:
Krishna, Siram ChaitanyaReddy, Painti NagiKirubanantham, P.School of Computing
SRM Institute of Science and Technology Kattankulathur Department of Computing Technologies Chennai India School of Computing
College of Engineering and Technology SRM Institute of Science and Technology Kattankulathur Faculty of Engineering and Technology Department of Computing Technologies Chennai India
Today, the day-to-day generation of such a large amount of content on social media and other websites makes it impossible to maintain each image manually, so the need for automatically identifying sensitive images and...
详细信息
The rapid growth and pervasive presence of the Internet of Things(IoT)have led to an unparalleled increase in IoT devices,thereby intensifying worries over IoT *** learning(DL)-based intrusion detection(ID)has emerged...
详细信息
The rapid growth and pervasive presence of the Internet of Things(IoT)have led to an unparalleled increase in IoT devices,thereby intensifying worries over IoT *** learning(DL)-based intrusion detection(ID)has emerged as a vital method for protecting IoT *** rectify the deficiencies of current detection methodologies,we proposed and developed an IoT cyberattacks detection system(IoT-CDS)based on DL models for detecting bot attacks in IoT *** DL models—long short-term memory(LSTM),gated recurrent units(GRUs),and convolutional neural network-LSTM(CNN-LSTM)were suggested to detect and classify IoT *** BoT-IoT dataset was used to examine the proposed IoT-CDS system,and the dataset includes six attacks with normal *** experiments conducted on the BoT-IoT network dataset reveal that the LSTM model attained an impressive accuracy rate of 99.99%.Compared with other internal and external methods using the same dataset,it is observed that the LSTM model achieved higher accuracy *** are more efficient than GRUs and CNN-LSTMs in real-time performance and resource efficiency for cyberattack *** method,without feature selection,demonstrates advantages in training time and detection ***,the proposed approach can be extended to improve the security of various IoT applications,representing a significant contribution to IoT security.
The deep learning models are identified as having a significant impact on various *** same can be adapted to the problem of brain tumor ***,several deep learning models are presented earlier,but they need better class...
详细信息
The deep learning models are identified as having a significant impact on various *** same can be adapted to the problem of brain tumor ***,several deep learning models are presented earlier,but they need better classification *** efficient Multi-Feature Approximation Based Convolution Neural Network(CNN)model(MFACNN)is proposed to handle this *** method reads the input 3D Magnetic Resonance Imaging(MRI)images and applies Gabor filters at multiple *** noise-removed image has been equalized for its quality by using histogram ***,the features like white mass,grey mass,texture,and shape are extracted from the *** features are trained with deep learning Convolution Neural Network(CNN).The network has been designed with a single convolution layer towards dimensionality *** texture features obtained from the brain image have been transformed into a multi-dimensional feature matrix,which has been transformed into a single-dimensional feature vector at the convolution *** neurons of the intermediate layer are designed to measure White Mass Texture Support(WMTS),GrayMass Texture Support(GMTS),WhiteMass Covariance Support(WMCS),GrayMass Covariance Support(GMCS),and Class Texture Adhesive Support(CTAS).In the test phase,the neurons at the intermediate layer compute the support as mentioned above values towards various classes of *** on that,the method adds a Multi-Variate Feature Similarity Measure(MVFSM).Based on the importance ofMVFSM,the process finds the class of brain image given and produces an efficient result.
Internet of Things (IoT) technology quickly transformed traditional management and engagement techniques in several sectors. This work explores the trends and applications of the Internet of Things in industries, incl...
详细信息
Anticipating the imminent surge of retired lithium-ion batteries(R-LIBs)from electric vehicles,the need for safe,cost-effective and environmentally friendly disposal technologies has *** paper seeks to offer a compreh...
详细信息
Anticipating the imminent surge of retired lithium-ion batteries(R-LIBs)from electric vehicles,the need for safe,cost-effective and environmentally friendly disposal technologies has *** paper seeks to offer a comprehensive overview of the entire disposal framework for R-LIBs,encompassing a broad spectrum of activities,including screening,repurposing and ***,we delve deeply into a thorough examination of current screening technologies,shifting the focus from a mere enumeration of screening methods to the exploration of the strategies for enhancing screening ***,we outline battery repurposing with associated key factors,summarizing stationary applications and sizing methods for R-LIBs in their second life.A particular light is shed on available reconditioning solutions,demonstrating their great potential in facilitating battery safety and lifetime in repurposing scenarios and identifying their techno-economic *** the realm of battery recycling,we present an extensive survey of pre-treatment options and subsequent material recovery ***,we introduce several global leading recyclers to illustrate their industrial processes and technical ***,relevant challenges and evolving trends are investigated in pursuit of a sustainable end-of-life management and disposal *** hope that this study can serve as a valuable resource for researchers,industry professionals and policymakers in this field,ultimately facilitating the adoption of proper disposal practices.
Time series data plays a crucial role in intelligent transportation *** flow forecasting represents a precise estimation of future traffic flow within a specific region and time *** approaches,including sequence perio...
详细信息
Time series data plays a crucial role in intelligent transportation *** flow forecasting represents a precise estimation of future traffic flow within a specific region and time *** approaches,including sequence periodic,regression,and deep learning models,have shown promising results in short-term series ***,forecasting scenarios specifically focused on holiday traffic flow present unique challenges,such as distinct traffic patterns during vacations and the increased demand for long-term ***,the effectiveness of existing methods diminishes in such ***,we propose a novel longterm forecasting model based on scene matching and embedding fusion representation to forecast long-term holiday traffic *** model comprises three components:the similar scene matching module,responsible for extracting Similar Scene Features;the long-short term representation fusion module,which integrates scenario embeddings;and a simple fully connected layer at the head for making the final *** results on real datasets demonstrate that our model outperforms other methods,particularly in medium and long-term forecasting scenarios.
暂无评论