咨询与建议

限定检索结果

文献类型

  • 1,667 篇 期刊文献
  • 1,499 篇 会议
  • 42 册 图书

馆藏范围

  • 3,208 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2,001 篇 工学
    • 1,271 篇 计算机科学与技术...
    • 1,008 篇 软件工程
    • 315 篇 信息与通信工程
    • 270 篇 控制科学与工程
    • 245 篇 电气工程
    • 203 篇 生物工程
    • 200 篇 电子科学与技术(可...
    • 175 篇 生物医学工程(可授...
    • 174 篇 光学工程
    • 130 篇 机械工程
    • 103 篇 化学工程与技术
    • 89 篇 材料科学与工程(可...
    • 83 篇 动力工程及工程热...
    • 77 篇 仪器科学与技术
    • 66 篇 力学(可授工学、理...
    • 52 篇 土木工程
  • 1,366 篇 理学
    • 642 篇 数学
    • 446 篇 物理学
    • 265 篇 生物学
    • 216 篇 统计学(可授理学、...
    • 179 篇 系统科学
    • 154 篇 化学
  • 454 篇 管理学
    • 281 篇 管理科学与工程(可...
    • 184 篇 图书情报与档案管...
    • 140 篇 工商管理
  • 196 篇 医学
    • 161 篇 临床医学
    • 130 篇 基础医学(可授医学...
    • 71 篇 药学(可授医学、理...
    • 53 篇 公共卫生与预防医...
  • 69 篇 法学
    • 58 篇 社会学
  • 55 篇 农学
  • 42 篇 经济学
  • 29 篇 教育学
  • 5 篇 文学
  • 5 篇 军事学
  • 3 篇 哲学
  • 2 篇 历史学
  • 2 篇 艺术学

主题

  • 137 篇 laboratories
  • 124 篇 computer science
  • 79 篇 computational mo...
  • 56 篇 computer archite...
  • 55 篇 machine learning
  • 48 篇 application soft...
  • 46 篇 artificial intel...
  • 44 篇 grid computing
  • 42 篇 deep learning
  • 40 篇 training
  • 38 篇 resource managem...
  • 38 篇 hardware
  • 36 篇 cloud computing
  • 36 篇 computer network...
  • 35 篇 optimization
  • 35 篇 processor schedu...
  • 34 篇 concurrent compu...
  • 33 篇 feature extracti...
  • 33 篇 distributed comp...
  • 32 篇 costs

机构

  • 57 篇 shanghai key lab...
  • 41 篇 department of ph...
  • 41 篇 faculty of scien...
  • 41 篇 departamento de ...
  • 40 篇 department for p...
  • 40 篇 department of ph...
  • 40 篇 yerevan physics ...
  • 39 篇 graduate school ...
  • 38 篇 department of ph...
  • 38 篇 department of ph...
  • 38 篇 department of ph...
  • 38 篇 lehrstuhl für ex...
  • 38 篇 dipartimento di ...
  • 38 篇 kirchhoff-instit...
  • 38 篇 institute of phy...
  • 37 篇 faculté des scie...
  • 37 篇 department of mo...
  • 37 篇 centre de calcul...
  • 37 篇 west university ...
  • 37 篇 research center ...

作者

  • 60 篇 rajkumar buyya
  • 35 篇 m. klein
  • 33 篇 c. alexa
  • 33 篇 j. m. izen
  • 33 篇 s. veneziano
  • 33 篇 g. bella
  • 33 篇 j. strandberg
  • 33 篇 d. calvet
  • 33 篇 c. amelung
  • 33 篇 n. orlando
  • 33 篇 h. a. gordon
  • 33 篇 y. tayalati
  • 33 篇 g. spigo
  • 33 篇 v. chiarella
  • 33 篇 f. siegert
  • 33 篇 a. c. könig
  • 32 篇 f. buehrer
  • 32 篇 a. t. law
  • 32 篇 d. di valentino
  • 32 篇 c. gumpert

语言

  • 3,014 篇 英文
  • 162 篇 其他
  • 30 篇 中文
  • 1 篇 德文
检索条件"机构=Computing Systems Laboratory Computer Science Division"
3208 条 记 录,以下是241-250 订阅
排序:
APPFLx: Providing Privacy-Preserving Cross-Silo Federated Learning as a Service  19
APPFLx: Providing Privacy-Preserving Cross-Silo Federated Le...
收藏 引用
19th IEEE International Conference on e-science, e-science 2023
作者: Li, Zilinghan He, Shilan Chaturvedi, Pranshu Hoang, Trung-Hieu Ryu, Minseok Huerta, E.A. Kindratenko, Volodymyr Fuhrman, Jordan Giger, Maryellen Chard, Ryan Kim, Kibaek Madduri, Ravi Data Science and Learning Division Argonne National Laboratory LemontIL60439 United States Department of Computer Science University of Illinois at Urbana-Champaign UrbanaIL61801 United States National Center for Supercomputing Applications University of Illinois at Urbana-Champaign UrbanaIL61801 United States Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign UrbanaIL61801 United States School of Computing and Augmented Intelligence Arizona State University TempeAZ85281 United States Department of Physics University of Illinois at Urbana-Champaign UrbanaIL61801 United States Department of Computer Science The University of Chicago ChicagoIL60637 United States University of Chicago Consortium for Advanced Science and Engineering ChicagoIL60637 United States Mathematics and Computer Science Division Argonne National Laboratory LemontIL60439 United States
Cross-silo privacy-preserving federated learning (PPFL) is a powerful tool to collaboratively train robust and generalized machine learning (ML) models without sharing sensitive (e.g., healthcare of financial) local d... 详细信息
来源: 评论
Faithful Polarization Entanglement Distribution in the SeQUeNCe Quantum Network Simulator
Faithful Polarization Entanglement Distribution in the SeQUe...
收藏 引用
2024 Frontiers in Optics, FiO 2024
作者: Singal, Ansh Zang, Allen Ramesh, Anirudh Kolar, Alexander Chung, Joaquin Kettimuthu, Rajkumar Kumar, Prem Center for Photonic Communication and Computing Dept. of Electrical and Computer Eng. Northwestern University EvanstonIL60208 United States Pritzker School of Molecular Engineering University of Chicago 5801 S Ellis Ave ChicagoIL60637 United States Data Science and Learning Division Argonne National Laboratory 9700 S Cass Ave. LemontIL60439 United States
We simulate polarization entanglement distribution with the Fock state representation in the open-sourced quantum network simulator SeQUeNCe. Simulations are validated by comparing with experimental entanglement distr... 详细信息
来源: 评论
Matrix Factorization for Inferring Associations and Missing Links
arXiv
收藏 引用
arXiv 2025年
作者: Barron, Ryan Eren, Maksim E. Truong, Duc P. Matuszek, Cynthia Wendelberger, James Dorn, Mary F. Alexandrov, Boian Theoretical Division Los Alamos National Laboratory United States Information Systems and Modeling Los Alamos National Laboratory United States Department of Computer Science and Electrical Engineering University of Maryland Baltimore County United States Computer Computational and Statistical Sciences Los Alamos National Laboratory United States
Missing link prediction is a method for network analysis, with applications in recommender systems, biology, social sciences, cybersecurity, information retrieval, and Artificial Intelligence (AI) reasoning in Knowled... 详细信息
来源: 评论
On the properties of kullback-leibler divergence between multivariate Gaussian distributions  23
On the properties of kullback-leibler divergence between mul...
收藏 引用
Proceedings of the 37th International Conference on Neural Information Processing systems
作者: Yufeng Zhang Jialu Pan Kenli Li Wanwei Liu Zhenbang Chen Xinwang Liu Ji Wang College of Computer Science and Electronic Engineering Hunan University Changsha China College of Computer Key Laboratory of Software Engineering for Complex Systems National University of Defense Technology Changsha China College of Computer State Key Laboratory for High Performance Computing Key laboratory of Software Engineering for Complex Systems National University of Defense Technology Changsha China
Kullback-Leibler (KL) divergence is one of the most important measures to calculate the difference between probability distributions. In this paper, we theoretically study several properties of KL divergence between m...
来源: 评论
An Elite Archive-Assisted Multi-Objective Evolutionary Algorithm for mRNA Design
An Elite Archive-Assisted Multi-Objective Evolutionary Algor...
收藏 引用
Congress on Evolutionary Computation
作者: Wenjing Hong Cheng Chen Zexuan Zhu Ke Tang National Engineering Laboratory for Big Data System Computing Technology Shenzhen University Shenzhen China Research Institute of Trustworthy Autonomous Systems Southern University of Science and Technology Shenzhen China Department of Computer Science and Engineering Southern University of Science and Technology Shenzhen China
Messenger RNA (mRNA) vaccines have emerged as highly effective strategies in the prophylaxis and treatment of diseases. mRNA design, a key to the success of mRNA vaccines, in-volves finding optimal codons and increasi... 详细信息
来源: 评论
Deep-Ensemble-Based Uncertainty Quantification in Spatiotemporal Graph Neural Networks for Traffic Forecasting
arXiv
收藏 引用
arXiv 2022年
作者: Mallick, Tanwi Balaprakash, Prasanna Macfarlane, Jane Mathematics and Computer Science Division Argonne National Laboratory LemontIL United States Mathematics and Computer Science Division Argonne Leadership Computing Facility Argonne National Laboratory LemontIL United States Sustainable Energy Systems Group Lawrence Berkeley National Laboratory BerkeleyCA United States
Deep-learning-based data-driven forecasting methods have produced impressive results for traffic forecasting. A major limitation of these methods, however, is that they provide forecasts without estimates of uncertain... 详细信息
来源: 评论
DIVIDE AND CONQUER: LEARNING CHAOTIC DYNAMICAL systems WITH MULTI-STEP PENALTY NEURAL ORDINARY DIFFERENTIAL EQUATIONS
arXiv
收藏 引用
arXiv 2024年
作者: Chakraborty, Dibyajyoti Chung, Seung Whan Arcomano, Troy Maulik, Romit Information Sciences and Technology Pennsylvania State University University ParkPA United States Center for Applied Scientific Computing Lawrence Livermore National Laboratory LivermoreCA United States Environmental Science Division Argonne National Laboratory LemontIL United States Mathematics and Computer Science Division Argonne National Laboratory LemontIL United States
Forecasting high-dimensional dynamical systems is a fundamental challenge in various fields, such as geosciences and engineering. Neural Ordinary Differential Equations (NODEs), which combine the power of neural netwo... 详细信息
来源: 评论
Indirect influence in social networks as an induced percolation phenomenon (vol 119, e2100151119, 2022)
收藏 引用
PROCEEDINGS OF THE NATIONAL ACADEMY OF scienceS OF THE UNITED STATES OF AMERICA 2022年 第24期119卷 e2100151119-e2100151119页
作者: Xie, Jiarong Wang, Xiangrong Feng, Ling Zhao, Jin-Hua Liu, Wenyuan Moreno, Yamir Hu, Yanqing School of Computer Science and Engineering Sun Yat-sen University 510006 Guangzhou China Institute of Future Networks Southern University of Science and Technology 518055 Shenzhen China Peng Cheng Laboratory 518066 Shenzhen China Institute of High Performance Computing A*STAR 138632 Singapore Department of Physics National University of Singapore 117551 Singapore Guangdong Provincial Key Laboratory of Nuclear Science Institute of Quantum Matter South China Normal University 510006 Guangzhou China Guangdong-Hong Kong Joint Laboratory of Quantum Matter Southern Nuclear Science Computing Center South China Normal University 510006 Guangzhou China Division of Physics and Applied Physics School of Physical and Mathematical Sciences Nanyang Technological University 637371 Singapore Institute for Biocomputation and Physics of Complex Systems University of Zaragoza 50018 Zaragoza Spain Department of Theoretical Physics University of Zaragoza 50018 Zaragoza Spain ISI Foundation 10126 Torino Italy Department of Statistics and Data Science College of Science Southern University of Science and Technology 518055 Shenzhen China
Percolation theory has been widely used to study phase transitions in network systems. It has also successfully explained various macroscopic spreading phenomena across different fields. Yet, the theoretical framework... 详细信息
来源: 评论
Multi-agent Traffic Prediction via Denoised Endpoint Distribution
Multi-agent Traffic Prediction via Denoised Endpoint Distrib...
收藏 引用
IEEE/RSJ International Conference on Intelligent Robots and systems (IROS)
作者: Yao Liu Ruoyu Wang Yuanjiang Cao Quan Z. Sheng Lina Yao Key Laboratory of Intelligent Computing in Medical Image Ministry of Education Northeastern University Shenyang China School of Computer Science and Engineering Northeastern University Shenyang China National Frontiers Science Center for Industrial Intelligence and Systems Optimization Shenyang China School of Computing Macquarie University Sydney Australia School of Computer Science and Engineering University of New South Wales Sydney Australia Data 61 CSIRO & School of Computer Science and Engineering University of New South Wales Sydney Australia
The exploration of high-speed movement by robots or road traffic agents is crucial for autonomous driving and navigation. Trajectory prediction at high speeds requires considering historical features and interactions ... 详细信息
来源: 评论
Multi-Layer Perceptron Regression Model for Material Characterization in the Microwave Frequency Range with Cross-Dataset Validation  7
Multi-Layer Perceptron Regression Model for Material Charact...
收藏 引用
7th International Youth Conference on Radio Electronics, Electrical and Power Engineering, REEPE 2025
作者: Hanima Kannan, C.H. Gupta, Deepa Mathur, Parul Kurup, Dhanesh G. Chaudhari, Tilesh Sanjay Mathur, Priyanka Amrita School of Engineering Amrita Vishwa Vidyapeetham Rf and Wireless Systems Laboratory Department of Electronics and Communication Engineering Bengaluru India Amrita School of Computing Amrita Vishwa Vidyapeetham Department of Computer Science and Engineering Bengaluru India Indian Institute of Technology Creative and Advanced Research Based on Nanomaterials Laboratory Department of Chemical Engineering Hyderabad India School of Engineering and Applied Science Bennett University U.P. Greater Noida India
This paper presents a Multi-Layer Perceptron (MLP) based regression model for characterizing materials at micrwave frequency range. A mathematical model and experimental setup of the Open-Ended Coaxial Probe (OECP) se... 详细信息
来源: 评论