Connected Autonomous Vehicle (CAV) Driving, as a data-driven intelligent driving technology within the Internet of Vehicles (IoV), presents significant challenges to the efficiency and security of real-time data manag...
详细信息
Connected Autonomous Vehicle (CAV) Driving, as a data-driven intelligent driving technology within the Internet of Vehicles (IoV), presents significant challenges to the efficiency and security of real-time data management. The combination of Web3.0 and edge content caching holds promise in providing low-latency data access for CAVs’ real-time applications. Web3.0 enables the reliable pre-migration of frequently requested content from content providers to edge nodes. However, identifying optimal edge node peers for joint content caching and replacement remains challenging due to the dynamic nature of traffic flow in IoV. Addressing these challenges, this article introduces GAMA-Cache, an innovative edge content caching methodology leveraging Graph Attention Networks (GAT) and Multi-Agent Reinforcement Learning (MARL). GAMA-Cache conceptualizes the cooperative edge content caching issue as a constrained Markov decision process. It employs a MARL technique predicated on cooperation effectiveness to discern optimal caching decisions, with GAT augmenting information extracted from adjacent nodes. A distinct collaborator selection mechanism is also developed to streamline communication between agents, filtering out those with minimal correlations in the vector input to the policy network. Experimental results demonstrate that, in terms of service latency and delivery failure, the GAMA-Cache outperforms other state-of-the-art MARL solutions for edge content caching in IoV.
The rapid advancements in big data and the Internet of Things (IoT) have significantly accelerated the digital transformation of medical institutions, leading to the widespread adoption of Digital Twin Healthcare (DTH...
详细信息
The rapid advancements in big data and the Internet of Things (IoT) have significantly accelerated the digital transformation of medical institutions, leading to the widespread adoption of Digital Twin Healthcare (DTH). The Cloud DTH Platform (CDTH) serves as a cloud-based framework that integrates DTH models, healthcare resources, patient data, and medical services. By leveraging real-time data from medical devices, the CDTH platform enables intelligent healthcare services such as disease prediction and medical resource optimization. However, the platform functions as a system of systems (SoS), comprising interconnected yet independent healthcare services. This complexity is further compounded by the integration of both black-box AI models and domain-specific mechanistic models, which pose challenges in ensuring the interpretability and trustworthiness of DTH models. To address these challenges, we propose a Model-Based systems Engineering (MBSE)-driven DTH modeling methodology derived from systematic requirement and functional analyses. To implement this methodology effectively, we introduce a DTH model development approach using the X language, along with a comprehensive toolchain designed to streamline the development process. Together, this methodology and toolchain form a robust framework that enables engineers to efficiently develop interpretable and trustworthy DTH models for the CDTH platform. By integrating domain-specific mechanistic models with AI algorithms, the framework enhances model transparency and reliability. Finally, we validate our approach through a case study involving elderly patient care, demonstrating its effectiveness in supporting the development of DTH models that meet healthcare and interpretability requirements.
Explainable Fake News Detection (EFND) is a new challenge that aims to verify news authenticity and provide clear explanations for its decisions. Traditional EFND methods often treat the tasks of classification and ex...
详细信息
Explainable Fake News Detection (EFND) is a new challenge that aims to verify news authenticity and provide clear explanations for its decisions. Traditional EFND methods often treat the tasks of classification and explanation as separate, ignoring the fact that explanation content can assist in enhancing fake news detection. To overcome this gap, we present a new solution: the End-to-end Explainable Fake News Detection Network (\(EExpFND\)). Our model includes an evidence-claim variational causal inference component, which not only utilizes explanation content to improve fake news detection but also employs a variational approach to address the distributional bias between the ground truth explanation in the training set and the prediction explanation in the test set. Additionally, we incorporate a masked attention network to detail the nuanced relationships between evidence and claims. Our comprehensive tests across two public datasets show that \(EExpFND\) sets a new benchmark in performance. The code is available at https://***/r/EExpFND-F5C6.
This book focuses on a critical issue in the study of physical agents, whether natural or artificial: the quantitative modelling of sensory–motor coordination.;Adopting a novel approach, it defines a common scientifi...
详细信息
ISBN:
(数字)9783030141264
ISBN:
(纸本)9783030141240
This book focuses on a critical issue in the study of physical agents, whether natural or artificial: the quantitative modelling of sensory–motor coordination.;Adopting a novel approach, it defines a common scientific framework for both the intelligent systems designed by engineers and those that have evolved naturally. As such it contributes to the widespread adoption of a rigorous quantitative and refutable approach in the scientific study of ‘embodied’ intelligence and cognition.;More than 70 years after Norbert Wiener’s famous book Cybernetics: or Control and Communication in the Animal and the Machine (1948), robotics, AI and life sciences seem to be converging towards a common model of what we can call the ‘science of embodied intelligent/cognitive agents’.;This book is interesting for an interdisciplinary community of researchers, technologists and entrepreneurs working at the frontiers of robotics and AI, neuroscience and general life and brain sciences.
Some of the most challenging problems in science and engineering are being addressed by the integration of computation and science, a research ?eld known as computational science. Computational science plays a vital r...
详细信息
ISBN:
(数字)9783540448600
ISBN:
(纸本)9783540401940
Some of the most challenging problems in science and engineering are being addressed by the integration of computation and science, a research ?eld known as computational science. Computational science plays a vital role in fundamental advances in biology, physics, chemistry, astronomy, and a host of other disciplines. This is through the coordination of computation, data management, access to instrumentation, knowledge synthesis, and the use of new devices. It has an impact on researchers and practitioners in the sciences and beyond. The sheer size of many challenges in computational science dictates the use of supercomputing, parallel and distri- ted processing, grid-based processing, advanced visualization and sophisticated algorithms. At the dawn of the 21st century the series of International Conferences on Computational science (ICCS) was initiated with a ?rst meeting in May 2001 in San Francisco. The success of that meeting motivated the organization of the - cond meeting held in Amsterdam April 21–24, 2002, where over 500 participants pushed the research ?eld further. The International Conference on Computational science 2003 (ICCS 2003) is the follow-up to these earlier conferences. ICCS 2003 is unique, in that it was a single event held at two di?erent sites almost opposite each other on the globe – Melbourne, Australia and St. Petersburg, Russian Federation. The conference ran on the same dates at both locations and all the presented work was published in a single set of proceedings, which you hold in your hands right now.
Trajectory prediction is a crucial challenge in autonomous vehicle motion planning and decision-making techniques. However, existing methods face limitations in accurately capturing vehicle dynamics and interactions. ...
详细信息
Trajectory prediction is a crucial challenge in autonomous vehicle motion planning and decision-making techniques. However, existing methods face limitations in accurately capturing vehicle dynamics and interactions. To address this issue, this paper proposes a novel approach to extracting vehicle velocity and acceleration, enabling the learning of vehicle dynamics and encoding them as auxiliary information. The VDI-LSTM model is designed, incorporating graph convolution and attention mechanisms to capture vehicle interactions using trajectory data and dynamic information. Specifically, a dynamics encoder is designed to capture the dynamic information, a dynamic graph is employed to represent vehicle interactions, and an attention mechanism is introduced to enhance the performance of LSTM and graph convolution. To demonstrate the effectiveness of our model, extensive experiments are conducted, including comparisons with several baselines and ablation studies on real-world highway datasets. Experimental results show that VDI-LSTM outperforms other baselines compared, which obtains a 3% improvement on the average RMSE indicator over the five prediction steps.
GECON - Grid Economics and Business Models Cloud computing is seen by many people as the natural evolution of Grid computing concepts. Both, for instance, rely on the use of service-based approaches for pro- sioning ...
详细信息
ISBN:
(数字)9783642038648
ISBN:
(纸本)9783642038631
GECON - Grid Economics and Business Models Cloud computing is seen by many people as the natural evolution of Grid computing concepts. Both, for instance, rely on the use of service-based approaches for pro- sioning compute and data resources. The importance of understanding business m- els and the economics of distributed computingsystems and services has generally remained unchanged in the move to Cloud computing. This understanding is nec- sary in order to build sustainable e-infrastructure and businesses around this paradigm of sharing Cloud services. Currently, only a handful of companies have created s- cessful businesses around Cloud services. Among these, Amazon and Salesforce (with their offerings of Elastic Compute Cloud and force. com among other offerings) are the most prominent. Both companies understand how to charge for their services and how to enable commercial transactions on them. However, whether a wide-spread adoption of Cloud services will occur has to seen. One key enabler remains the ability to support suitable business models and charging schemes that appeal to users o- sourcing (part of) their internal business functions. The topics that have been addressed by the authors of accepted papers reflect the above-described situation and the need for a better understanding of Grid economics. The topics range from market mechanisms for trading computing resources, capacity planning, tools for modeling economic aspects of service-oriented systems, archit- tures for handling service level agreements, to models for economically efficient resource allocation.
This book constitutes the refereed proceedings of the 15th International Conference on Web-Age Information Management, WAIM 2014, held in Macau, China, in June 2014. The 48 revised full papers presented together with ...
详细信息
ISBN:
(数字)9783319080109
ISBN:
(纸本)9783319080093
This book constitutes the refereed proceedings of the 15th International Conference on Web-Age Information Management, WAIM 2014, held in Macau, China, in June 2014. The 48 revised full papers presented together with 35 short papers were carefully reviewed and selected from numerous submissions. The papers are organized in topical sections on information retrieval; recommender systems; query processing and optimization; data mining; data and information quality; information extraction; mobile and pervasive computing; stream, time-series; security and privacy; semantic web; cloud computing; new hardware; crowdsourcing; social computing.
暂无评论