咨询与建议

限定检索结果

文献类型

  • 196 篇 会议
  • 188 篇 期刊文献

馆藏范围

  • 384 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 244 篇 工学
    • 176 篇 计算机科学与技术...
    • 148 篇 软件工程
    • 66 篇 信息与通信工程
    • 39 篇 生物工程
    • 33 篇 控制科学与工程
    • 30 篇 电气工程
    • 27 篇 生物医学工程(可授...
    • 22 篇 电子科学与技术(可...
    • 22 篇 化学工程与技术
    • 17 篇 机械工程
    • 16 篇 光学工程
    • 9 篇 网络空间安全
    • 8 篇 仪器科学与技术
    • 7 篇 动力工程及工程热...
  • 154 篇 理学
    • 68 篇 数学
    • 49 篇 生物学
    • 30 篇 物理学
    • 21 篇 化学
    • 20 篇 统计学(可授理学、...
    • 11 篇 地球物理学
    • 9 篇 系统科学
    • 7 篇 天文学
  • 69 篇 管理学
    • 37 篇 图书情报与档案管...
    • 32 篇 管理科学与工程(可...
    • 12 篇 工商管理
  • 26 篇 医学
    • 23 篇 基础医学(可授医学...
    • 22 篇 临床医学
    • 19 篇 药学(可授医学、理...
    • 7 篇 公共卫生与预防医...
  • 7 篇 法学
  • 5 篇 经济学
    • 5 篇 应用经济学
  • 5 篇 农学
  • 3 篇 教育学

主题

  • 17 篇 feature extracti...
  • 14 篇 training
  • 12 篇 semantics
  • 11 篇 deep learning
  • 11 篇 convolution
  • 10 篇 object detection
  • 8 篇 contrastive lear...
  • 8 篇 software
  • 7 篇 speech processin...
  • 7 篇 computational mo...
  • 7 篇 machine learning
  • 6 篇 three-dimensiona...
  • 6 篇 signal processin...
  • 6 篇 neural networks
  • 6 篇 optimization
  • 6 篇 knowledge graph
  • 6 篇 protocols
  • 5 篇 communities
  • 5 篇 data processing
  • 5 篇 proteins

机构

  • 35 篇 national enginee...
  • 30 篇 university of ch...
  • 22 篇 school of comput...
  • 21 篇 guangdong provin...
  • 18 篇 key laboratory o...
  • 18 篇 xi'an key labora...
  • 18 篇 shaanxi key labo...
  • 15 篇 college of compu...
  • 15 篇 school of cyber ...
  • 14 篇 school of comput...
  • 14 篇 shenzhen institu...
  • 12 篇 shaanxi key labo...
  • 12 篇 peng cheng labor...
  • 12 篇 college of compu...
  • 12 篇 college of compu...
  • 11 篇 key lab. of inte...
  • 11 篇 school of comput...
  • 11 篇 school of comput...
  • 11 篇 guangdong key la...
  • 10 篇 key laboratory o...

作者

  • 26 篇 huang qingming
  • 23 篇 shen linlin
  • 22 篇 xu qianqian
  • 16 篇 yang zhiyong
  • 12 篇 wang jinbao
  • 11 篇 chen yanping
  • 11 篇 wang zhongmin
  • 11 篇 cao xiaochun
  • 10 篇 gao can
  • 10 篇 bao shilong
  • 9 篇 yu zitong
  • 9 篇 jian-tao zhou
  • 9 篇 linlin shen
  • 8 篇 xia hong
  • 8 篇 qingming huang
  • 7 篇 zhou jie
  • 7 篇 wu di
  • 7 篇 zhang jie
  • 6 篇 huang jiwu
  • 6 篇 qianqian xu

语言

  • 345 篇 英文
  • 36 篇 其他
  • 4 篇 中文
检索条件"机构=Computing Technology and Data Processing"
384 条 记 录,以下是191-200 订阅
排序:
A novel method for ECG signal classification via one-dimensional convolutional neural network
A novel method for ECG signal classification via one-dimensi...
收藏 引用
作者: Hua, Xuan Han, Jungang Zhao, Chen Tang, Haipeng He, Zhuo Chen, Qinghui Tang, Shaojie Tang, Jinshan Zhou, Weihua College of Electronic Engineering Xi’an University of Posts and Telecommunications Xi’an710121 China Key Laboratory of Network Data Analysis and Intelligent Processing in Shaanxi Xi’an710121 China College of Computer Science and Technology Xi’an University of Posts and Telecommunications Xi’an710121 China College of Computing Michigan Technological University HoughtonMI49931 United States School of Computing University of Southern Mississippi Long Beach39560 United States Department of Kinesiology and Integrative Physiology Michigan Technological University HoughtonMI49931 United States School of Automation Xi’an University of Posts and Telecommunications Xi’an710121 China
This paper develops an end-to-end ECG signal classification algorithm based on a novel segmentation strategy and 1D Convolutional Neural Networks (CNN) to aid the classification of ECG signals and alleviate the worklo... 详细信息
来源: 评论
Gaf-Net: Graph Attention Fusion Network for Multi-View Semi-Supervised Classification
SSRN
收藏 引用
SSRN 2023年
作者: Song, Na Du, Shide Wu, Zhihao Zhong, Luying Wang, Shiping School of Computer Science and Technology Hainan University Hainan570228 China School of Mechanical Electrical and Information Engineering Putian University Putian351100 China College of Computer and Data Science Fuzhou University Fuzhou350116 China Fujian Provincial Key Laboratory of Network Computing and Intelligent Information Processing Fuzhou University Fuzhou350116 China
Multi-view semi-supervised classification is a typical task to classify data using a small amount of supervised information, which has attracted a lot of attention from researchers in past years. In practice, existing... 详细信息
来源: 评论
ADA-GAD: Anomaly-Denoised Autoencoders for Graph Anomaly Detection
arXiv
收藏 引用
arXiv 2023年
作者: He, Junwei Xu, Qianqian Jiang, Yangbangyan Wang, Zitai Huang, Qingming Key Laboratory of Intelligent Information Processing Institute of Computing Technology CAS Beijing China School of Computer Science and Technology University of Chinese Academy of Sciences Beijing China Institute of Information Engineering CAS Beijing China School of Cyber Security University of Chinese Academy of Sciences Beijing China Key Laboratory of Big Data Mining and Knowledge Management Chinese Academy of Sciences Beijing China
Graph anomaly detection is crucial for identifying nodes that deviate from regular behavior within graphs, benefiting various domains such as fraud detection and social network. Although existing reconstruction-based ... 详细信息
来源: 评论
How to use open-pFind in deep proteomics data analysis?—A protocol for rigorous identification and quantitation of peptides and proteins from mass spectrometry data
收藏 引用
Biophysics Reports 2021年 第3期7卷 207-226页
作者: Guangcan Shao Yong Cao Zhenlin Chen Chao Liu Shangtong Li Hao Chi Meng-Qiu Dong School of Life Sciences Peking University National Institute of Biological Sciences Beijing Tsinghua Institute of Multidisciplinary Biomedical Research Tsinghua University Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS) University of CASInstitute of Computing TechnologyCAS University of Chinese Academy of Sciences Beijing Advanced Innovation Center for Big Data-Based Precision Medicine School of Medicine and EngineeringBeihang University
High-throughput proteomics based on mass spectrometry(MS) analysis has permeated biomedical science and propelled numerous research projects. p Find 3 is a database search engine for high-speed and in-depth proteomi... 详细信息
来源: 评论
Syntax-enhanced pre-trained model  59
Syntax-enhanced pre-trained model
收藏 引用
Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language processing, ACL-IJCNLP 2021
作者: Xu, Zenan Guo, Daya Tang, Duyu Su, Qinliang Shou, Linjun Gong, Ming Zhong, Wanjun Quan, Xiaojun Jiang, Daxin Duan, Nan School of Computer Science and Engineering Sun Yat-Sen University Guangzhou China Microsoft Research Asia Beijing China Microsoft Search Technology Center Asia Beijing China Guangdong Key Laboratory of Big Data Analysis and Processing Guangzhou China Key Lab. of Machine Intelligence and Advanced Computing Ministry of Education China
We study the problem of leveraging the syntactic structure of text to enhance pre-trained models such as BERT and RoBERTa. Existing methods utilize syntax of text either in the pre-training stage or in the fine-tuning... 详细信息
来源: 评论
Msnoa-Catboost: A Novel Pan-Cancer Diagnosis Model with Feature Subset Selection and Hyperparameter Optimization
SSRN
收藏 引用
SSRN 2024年
作者: Xiao, Tianyun Zhang, Zichen Kong, Shanshan Liu, Fengchun Yang, Aimin Hebei Key Laboratory of Data Science and Application North China University of Science and Technology Hebei Tangshan063210 China The Key Laboratory of Engineering Computing in Tangshan City North China University of Science and Technology Hebei Tangshan063210 China College of Science North China University of Science and Technology Hebei Tangshan063210 China Hebei Engineering Research Center for the Intelligentization of Iron Ore Optimization and Ironmaking Raw Materials Preparation Processes North China University of Science and Technology Hebei Tangshan China Tangshan Intelligent Industry and Image Processing Technology Innovation Center North China University of Science and Technology Hebei Tangshan China
Cancer, as a global epidemic disease, remains a significant threat to human life and health. Prevention and early diagnosis are widely recognized as effective ways to tackle cancer. With the development of big data te... 详细信息
来源: 评论
Low-Light Enhancement Effect on Classification and Detection: An Empirical Study
arXiv
收藏 引用
arXiv 2024年
作者: Wu, Xu Lai, Zhihui Jie, Zhou Gao, Can Hou, Xianxu Zhang, Ya-Nan Shen, Linlin The Computer Vision Institute College of Computer Science and Software Engineering Shenzhen University Shenzhen518060 China Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen518060 China Guangdong Key Laboratory of Intelligent Information Processing Shenzhen University Shenzhen518060 China School of AI and Advanced Computing Xi’an Jiaotong-Liverpool University China The National Engineering Laboratory for Big Data System Computing Technology Shenzhen University SZU Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society Guangdong Shenzhen518060 China
Low-light images are commonly encountered in real-world scenarios, and numerous low-light image enhancement (LLIE) methods have been proposed to improve the visibility of these images. The primary goal of LLIE is to g... 详细信息
来源: 评论
Neural Multi-Objective Combinatorial Optimization with Diversity Enhancement
arXiv
收藏 引用
arXiv 2023年
作者: Chen, Jinbiao Zhang, Zizhen Cao, Zhiguang Wu, Yaoxin Ma, Yining Ye, Te Wang, Jiahai School of Computer Science and Engineering Sun Yat-sen University China School of Computing and Information Systems Singapore Management University Singapore Department of Industrial Engineering & Innovation Sciences Eindhoven University of Technology Netherlands Department of Industrial Systems Engineering & Management National University of Singapore Singapore Key Laboratory of Machine Intelligence and Advanced Computing Ministry of Education Sun Yat-sen University China Guangdong Key Laboratory of Big Data Analysis and Processing Guangzhou China
Most of existing neural methods for multi-objective combinatorial optimization (MOCO) problems solely rely on decomposition, which often leads to repetitive solutions for the respective subproblems, thus a limited Par... 详细信息
来源: 评论
Generalized Face Forgery Detection via Adaptive Learning for Pre-trained Vision Transformer
arXiv
收藏 引用
arXiv 2023年
作者: Luo, Anwei Cai, Rizhao Kong, Chenqi Ju, Yakun Kang, Xiangui Huang, Jiwu Kot, Alex C. The School of Information Technology Jiangxi University of Finance and Economics Nanchang330013 China The School of Computer Science and Engineering Sun Yat-Sen University Guangzhou510006 China Lab. School of Electrical and Electronic Engineering Nanyang Technology University Singapore The Guangdong Key Laboratory of Intelligent Information Processing National Engineering Laboratory for Big Data System Computing Technology Shenzhen University Shenzhen518060 China The China-Singapore International Joint Research Institute Singapore
With the rapid progress of generative models, the current challenge in face forgery detection is how to effectively detect realistic manipulated faces from different unseen domains. Though previous studies show that p... 详细信息
来源: 评论
Controlled-source electromagnetic noise attenuation via a deep convolutional neural network and high-quality sounding curve screening mechanism
收藏 引用
Geophysics 2025年 第3期90卷 WA125-WA140页
作者: Liu, Yecheng Li, Diquan Li, Jin Zhang, Xian Central South University Monitoring Ministry of Education Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Changsha China Hunan Provincial Key Laboratory of Non-ferrous Resources and Geological Hazard Detection Changsha China Central South University School of Geoscience and Info-physics Changsha China Hunan Normal University College of Information Science and Engineering Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing Changsha China Hunan University of Finance and Economics School of Information Technology and Management Hunan Provincial Key Laboratory of Finance & Economics Big Data Science and Technology Changsha China
Strong noise is one of the biggest challenges in controlled-source electromagnetic (CSEM) exploration, which severely affects the quality of the recorded signal. We develop a novel and effective CSEM noise attenuation... 详细信息
来源: 评论