咨询与建议

限定检索结果

文献类型

  • 196 篇 会议
  • 188 篇 期刊文献

馆藏范围

  • 384 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 244 篇 工学
    • 176 篇 计算机科学与技术...
    • 148 篇 软件工程
    • 66 篇 信息与通信工程
    • 39 篇 生物工程
    • 33 篇 控制科学与工程
    • 30 篇 电气工程
    • 27 篇 生物医学工程(可授...
    • 22 篇 电子科学与技术(可...
    • 22 篇 化学工程与技术
    • 17 篇 机械工程
    • 16 篇 光学工程
    • 9 篇 网络空间安全
    • 8 篇 仪器科学与技术
    • 7 篇 动力工程及工程热...
  • 154 篇 理学
    • 68 篇 数学
    • 49 篇 生物学
    • 30 篇 物理学
    • 21 篇 化学
    • 20 篇 统计学(可授理学、...
    • 11 篇 地球物理学
    • 9 篇 系统科学
    • 7 篇 天文学
  • 69 篇 管理学
    • 37 篇 图书情报与档案管...
    • 32 篇 管理科学与工程(可...
    • 12 篇 工商管理
  • 26 篇 医学
    • 23 篇 基础医学(可授医学...
    • 22 篇 临床医学
    • 19 篇 药学(可授医学、理...
    • 7 篇 公共卫生与预防医...
  • 7 篇 法学
  • 5 篇 经济学
    • 5 篇 应用经济学
  • 5 篇 农学
  • 3 篇 教育学

主题

  • 17 篇 feature extracti...
  • 14 篇 training
  • 12 篇 semantics
  • 11 篇 deep learning
  • 11 篇 convolution
  • 10 篇 object detection
  • 8 篇 contrastive lear...
  • 8 篇 software
  • 7 篇 speech processin...
  • 7 篇 computational mo...
  • 7 篇 machine learning
  • 6 篇 three-dimensiona...
  • 6 篇 signal processin...
  • 6 篇 neural networks
  • 6 篇 optimization
  • 6 篇 knowledge graph
  • 6 篇 protocols
  • 5 篇 communities
  • 5 篇 data processing
  • 5 篇 proteins

机构

  • 35 篇 national enginee...
  • 30 篇 university of ch...
  • 22 篇 school of comput...
  • 21 篇 guangdong provin...
  • 18 篇 key laboratory o...
  • 18 篇 xi'an key labora...
  • 18 篇 shaanxi key labo...
  • 15 篇 college of compu...
  • 15 篇 school of cyber ...
  • 14 篇 school of comput...
  • 14 篇 shenzhen institu...
  • 12 篇 shaanxi key labo...
  • 12 篇 peng cheng labor...
  • 12 篇 college of compu...
  • 12 篇 college of compu...
  • 11 篇 key lab. of inte...
  • 11 篇 school of comput...
  • 11 篇 school of comput...
  • 11 篇 guangdong key la...
  • 10 篇 key laboratory o...

作者

  • 26 篇 huang qingming
  • 23 篇 shen linlin
  • 22 篇 xu qianqian
  • 16 篇 yang zhiyong
  • 12 篇 wang jinbao
  • 11 篇 chen yanping
  • 11 篇 wang zhongmin
  • 11 篇 cao xiaochun
  • 10 篇 gao can
  • 10 篇 bao shilong
  • 9 篇 yu zitong
  • 9 篇 jian-tao zhou
  • 9 篇 linlin shen
  • 8 篇 xia hong
  • 8 篇 qingming huang
  • 7 篇 zhou jie
  • 7 篇 wu di
  • 7 篇 zhang jie
  • 6 篇 huang jiwu
  • 6 篇 qianqian xu

语言

  • 345 篇 英文
  • 36 篇 其他
  • 4 篇 中文
检索条件"机构=Computing Technology and Data Processing"
384 条 记 录,以下是291-300 订阅
排序:
基于MeerKAT和FAST探索球状星团:脉冲星偏振研究(英文)
收藏 引用
Science Bulletin 2025年 第10期 1568-1571页
作者: 张蕾 Federico Abbate 李菂 Andrea Possenti Matthew Bailes Alessandro Ridolfi Paulo C.C.Freire Scott M.Ransom 张永坤 郭猛 尼盟萌 胡佳乐 冯毅 王培 张洁 支启军 National Astronomical Observatories Chinese Academy of Sciences Centre for Astrophysics and Supercomputing Swinburne University of Technology INAF-Osservatorio Astronomico di Cagliari Max-Planck-Institut für Radioastronomie New Cornerstone Science Laboratory Department of AstronomyTsinghua University ARC Center of Excellence for Gravitational Wave Discovery (OzGrav) Swinburne University of Technology Faculty of Physics University of Bielefeld National Radio Astronomy Observatory National Supercomputing Center in Jinan Qilu University of Technology Jinan Institute of Supercomputing Technology Research Center for Intelligent Computing Platforms Zhejiang Laboratory Institute for Astronomy School of PhysicsZhejiang University College of Physics and Electronic Engineering Qilu Normal University Guizhou Provincial Key Laboratory of Radio Astronomy and Data Processing Guizhou Normal University
Magnetic fields are pervasive throughout the Universe. They are integral to a wide array of astrophysical processes that span various physical scales and field strengths. The Galactic magnetic field,in particular, hol...
来源: 评论
BASSET: Bandpass-Adaptive Single-pulse SEarch Toolkit – Optimized Sub-Band Pulse Search Strategies for Faint Narrow-Band FRBs
arXiv
收藏 引用
arXiv 2025年
作者: Cao, J.H. Wang, P. Li, D. Pan, Q.H. Mao, K. Niu, C.H. Zhang, Y.K. Qu, Q.Y. Lu, W.J. Zhang, J.S. Zhu, Y.H. Wang, Y.D. Chen, H.X. Chen, X.L. Gügercinoğlu, E. Fang, J.H. Feng, Y. Gao, H. Huang, Y.F. Li, J. Miao, C.C. Tsai, C.W. Yao, J.M. You, S.P. Zhao, R.S. Liu, Q.Z. Weng, S.M. Yew, S.H. Zhang, J. Zhang, L. Zhou, D.K. Zhu, W.W. National Astronomical Observatories Chinese Academy of Sciences 20A Datun Road Chaoyang District Beijing100101 China University of Chinese Academy of Sciences Beijing100049 China Institute for Frontiers in Astronomy and Astrophysics Beijing Normal University Beijing102206 China Department of Astronomy Tsinghua University Beijing100084 China Zhejiang Lab Zhejiang Hangzhou311121 China Central China Normal University Wuhan430079 China Institute for Astronomy School of Physics Zhejiang University Hangzhou310027 China Department of Astronomy Beijing Normal University Beijing100875 China School of Astronomy and Space Science Nanjing University Nanjing210023 China Ministry of Education Nanjing210023 China Department of Astronomy School of Physical Sciences University of Science and Technology of China Hefei230026 China Xinjiang Astronomical Observatory Chinese Academy of Sciences Urumqi830011 China Key Laboratory of Information and Computing Science Guizhou Province Guizhou Normal University Guiyang550001 China Guizhou Provincial Key Laboratory of Radio Astronomy and Data Processing Guizhou Normal University Guiyang550001 China Purple Mountain Observatory Chinese Academy of Sciences Nanjing210023 China College of Physics and Electronic Engineering Qilu Normal University Jinan250200 China School of Physics and Astronomy Shanghai Jiao Tong University Shanghai200240 China Centre for Astrophysics and Supercomputing Swinburne University of Technology P.O. Box 218 HawthornVIC3122 Australia
The existing single-pulse search algorithms for fast radio bursts (FRBs) do not adequately consider the frequency bandpass pattern of the pulse, rendering them incomplete for the relatively narrow-spectrum detection o... 详细信息
来源: 评论
Learning compact target-oriented feature representations for visual tracking
arXiv
收藏 引用
arXiv 2019年
作者: Li, Chenglong Huang, Yan Wang, Liang Tang, Jin Lin, Liang Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education School of Computer Science and Technology Anhui University Institute of Physical Science and Information Technology Anhui University Center for Research on Intelligent Perception and Computing NLPR CASIA School of Data and Computer Science Sun Yat-Sen University
Many state-of-the-art trackers usually resort to the pre-trained convolutional neural network (CNN) model for correlation filtering, in which deep features could usually be redundant, noisy and less discriminative for... 详细信息
来源: 评论
Crystalline phase discriminating neutron tomography using advanced reconstruction methods
arXiv
收藏 引用
arXiv 2021年
作者: Ametova, Evelina Burca, Genoveva Chilingaryan, Suren Fardell, Gemma Jørgensen, Jakob S. Papoutsellis, Evangelos Pasca, Edoardo Warr, Ryan Turner, Martin Lionheart, William R.B. Withers, Philip J. Henry Royce Institute Department of Materials The University of Manchester M13 9PL United Kingdom Laboratory for Application of Synchrotron Radiation Karlsruhe Institute of Technology Germany ISIS Pulsed Neutron and Muon Source STFC UKRI Rutherford Appleton Laboratory United Kingdom Department of Mathematics The University of Manchester M13 9PL United Kingdom Institute for Data Processing and Electronics Karlsruhe Institute of Technology Germany Scientific Computing Department STFC UKRI Rutherford Appleton Laboratory United Kingdom Department of Applied Mathematics and Computer Science Technical University of Denmark Denmark Research IT Services The University of Manchester M13 9PL United Kingdom
Time-of-flight neutron imaging offers complementary attenuation contrast to X-ray computed tomography (CT), coupled with the ability to extract additional information from the variation in attenuation as a function of... 详细信息
来源: 评论
Cascaded partial decoder for fast and accurate salient object detection
arXiv
收藏 引用
arXiv 2019年
作者: Wu, Zhe Su, Li Huang, Qingming Beijing China Key Lab of Big Data Mining and Knowledge Management UCAS Beijing China Key Lab of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing China
Existing state-of-the-art salient object detection networks rely on aggregating multi-level features of pretrained convolutional neural networks (CNNs). Compared to high-level features, low-level features contribute l... 详细信息
来源: 评论
Hyperspectral Image Classification with Spatial Consistence Using Fully Convolutional Spatial Propagation Network
arXiv
收藏 引用
arXiv 2020年
作者: Jiang, Yenan Li, Ying Zou, Shanrong Zhang, Haokui Bai, Yunpeng School of Computer Science National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology Shaanxi Provincial Key Laboratory of Speech and Image Information Processing Northwestern Polytechnical University Xi’an710129 China School of Computer Science University of Adelaide AdelaideSA5005 Australia National Key Laboratory of Science and Technology on Space Microwave Xi’an710000 China School of Computing and Information Systems University of Melbourne MelbourneVIC3010 Australia
In recent years, deep convolutional neural networks (CNNs) have demonstrated impressive ability to represent hyperspectral images (HSIs) and achieved encouraging results in HSI classification. However, the existing CN... 详细信息
来源: 评论
FAST Observations of Four Comets to Search for the Molecular Line Emissions between 1.0 and 1.5 GHz Frequencies
arXiv
收藏 引用
arXiv 2024年
作者: Chen, Long-Fei Tsai, Chao-Wei Li, Jian-Yang Yang, Bin Li, Di Duan, Yan Hsia, Chih-Hao Pan, Zhichen Qian, Lei Quan, Donghui Jiang, Xue-Jian Li, Xiaohu Zhao, Ruining Zuo, Pei School of Physics and Electronic Science Guizhou Normal University Guiyang550025 China Guizhou Provincial Key Laboratory of Radio Astronomy and Data Processing Guiyang550025 China Research Center for Astronomical Computing Zhejiang Laboratory Hangzhou311100 China National Astronomical Observatories Chinese Academy of Sciences Beijing100101 China Institute for Frontiers in Astronomy and Astrophysics Beijing Normal University Beijing102206 China Key Laboratory of Radio Astronomy and Technology Chinese Academy of Sciences A20 Datun Road Chaoyang District Beijing100101 China School of Atmospheric Sciences Sun Yat-sen University Guangdong Zhuhai China Núcleo de Astronomía Facultad de Ingenieríay Ciencias Universidad Diego Portales Chile Department of Astronomy College of Physics and Electronic Engineering Qilu Normal University 2 Wenbo Road Zhangqiu District Jinan250200 China Department of Electronic and Optical Engineering Space Engineering University Beijing China Laboratory for Space Research Faculty of Science The University of Hong Kong Hong Kong Xinjiang Astronomical Observatory Chinese Academy of Sciences No. 150 Science 1-Street Urumqi830011 China CAS Key Laboratory of Optical Astronomy National Astronomical Observatories Chinese Academy of Sciences Beijing100101 China School of Astronomy and Space Sciences University of Chinese Academy of Sciences Beijing100049 China
We used the Five-hundred-meter Aperture Spherical radio Telescope (FAST) to search for the molecular emissions in the L-band between 1.0 and 1.5 GHz toward four comets, C/2020 F3 (NEOWISE), C/2020 R4 (ATLAS), C/2021 A... 详细信息
来源: 评论
DeePMD-kit v3: A Multiple-Backend Framework for Machine Learning Potentials
arXiv
收藏 引用
arXiv 2025年
作者: Zeng, Jinzhe Zhang, Duo Peng, Anyang Zhang, Xiangyu He, Sensen Wang, Yan Liu, Xinzijian Bi, Hangrui Li, Yifan Cai, Chun Zhang, Chengqian Du, Yiming Zhu, Jia-Xin Mo, Pinghui Huang, Zhengtao Zeng, Qiyu Shi, Shaochen Qin, Xuejian Yu, Zhaoxi Luo, Chenxing Ding, Ye Liu, Yun-Pei Shi, Ruosong Wang, Zhenyu Bore, Sigbjørn Løland Chang, Junhan Deng, Zhe Ding, Zhaohan Han, Siyuan Jiang, Wanrun Ke, Guolin Liu, Zhaoqing Lu, Denghui Muraoka, Koki Oliaei, Hananeh Singh, Anurag Kumar Que, Haohui Xu, Weihong Xu, Zhangmancang Zhuang, Yong-Bin Dai, Jiayu Giese, Timothy J. Jia, Weile Xu, Ben York, Darrin M. Zhang, Linfeng Wang, Han School of Artificial Intelligence and Data Science Unversity of Science and Technology of China Hefei China AI for Science Institute Beijing100080 China DP Technology Beijing100080 China Academy for Advanced Interdisciplinary Studies Peking University Beijing100871 China State Key Lab of Processors Institute of Computing Technology Chinese Academy of Sciences Beijing100871 China University of Chinese Academy of Sciences Beijing China Baidu Inc. Beijing China Department of Computer Science University of Toronto TorontoON Canada Department of Chemistry Princeton University PrincetonNJ08540 United States University of Chinese Academy of Sciences Beijing100871 China State Key Laboratory of Physical Chemistry of Solid Surfaces iChEM College of Chemistry and Chemical Engineering Xiamen University Xiamen361005 China College of Integrated Circuits Hunan University Changsha410082 China State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Center for Smart Materials and Device Integration School of Material Science and Engineering Wuhan University of Technology Wuhan430070 China College of Science National University of Defense Technology Changsha410073 China Hunan Key Laboratory of Extreme Matter and Applications National University of Defense Technology Changsha410073 China ByteDance Research Beijing100098 China Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo315201 China College of Materials Science and Opto-Electronic Technology University of Chinese Academy of Sciences Beijing100049 China Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education College of Chemistry Beijing Normal University Beijing100875 China Department of Geosciences Princeton University PrincetonNJ08544 United States Department of Applied Physics and Applied Mathematics Columbia University New YorkNY10027 United States IKKEM Fujian Xiamen361005 China Graduate
In recent years, machine learning potentials (MLPs) have become indispensable tools in physics, chemistry, and materials science, driving the development of software packages for molecular dynamics (MD) simulations an... 详细信息
来源: 评论
Image Segmentation Using Fuzzy C-means Optimized by Ant Lion Optimization
Image Segmentation Using Fuzzy C-means Optimized by Ant Lion...
收藏 引用
IEEE International Conference on Intelligent data Acquisition and Advanced computing Systems
作者: Can Jin Zhiwei Ye Lingyu Yan Ye Cao Aixin Zhang Lie Ma Xiang Hu Jiwei Hu School of Computer Science Hubei University of Technology Wuhan China Fujian Provincial Key Laboratory of Data Intensive Computing Key Laboratory of Intelligent Computing and Information Processing Fujian Province University Wuhan Jingzhi Technology Co. Ltd. Wuhan China Wuhan FiberHome Technical Services Co. Ltd. Wuhan China
Image segmentation is the indispensable part in the field of computer vision. There are tremendous methods for handling this task such as Otsu-thresholding and Fuzzy C-means (FCM). However, the segmentation results of... 详细信息
来源: 评论
Identifying High Potential Talent: A Neural Network Based Dynamic Social Profiling Approach
Identifying High Potential Talent: A Neural Network Based Dy...
收藏 引用
IEEE International Conference on data Mining (ICDM)
作者: Yuyang Ye Hengshu Zhu Tong Xu Fuzhen Zhuang Runlong Yu Hui Xiong Anhui Province Key Lab of Big Data Analysis and Application University of Science and Technology of China Baidu Talent Intelligence Center Baidu Inc Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS) Institute of Computing Technology University of Chinese Academy of Sciences
How to identify high-potential talent (HIPO) earlier in their career always has strategic importance for human resource management. While tremendous efforts have been made in this direction, most existing approaches a... 详细信息
来源: 评论