作者:
Stanley R. M. OliveiraOsmar R. ZaianeEmbrapa Information Technology
Andre Tosello 209 - Barao Geraldo 13083-886 - Campinas SP Brasil and Department of Computing Science University of Alberta Edmonton AB Canada T6G 2E8 s in Electronics from the University ofParis XI
France. He has worked in a variety of research areas such as data mining web mining multimedia databases information retrieval web technology natural language processing distance education and collab
Recent data mining algorithms have been designed for application domains that involve several types of objects stored in multiple relations in relational databases. This fact has motivated the increasing number of suc...
详细信息
ISBN:
(纸本)9780909925925
Recent data mining algorithms have been designed for application domains that involve several types of objects stored in multiple relations in relational databases. This fact has motivated the increasing number of successful applications of relational data mining over recent years. On the other hand, such applications have introduced a new threat to privacy and information security since from non-sensitive data one is able to infer sensitive information, including personal information, facts or even patterns that are not supposed to be disclosed. The existing access control models adopted to successfully manage the access of information in complex systems present some limitations in the context of data mining tasks. The main reason is that such models were designed to protect the access to explicit data (e.g. tables, attributes, views, etc), whereas data mining tasks deal with the discovery of implicit data (e.g. patterns). In this paper, we take a first step toward an access control model for ensuring privacy in relational data mining, notably in multi-relational association rules (MRAR). In this model, users associated with different mining access levels, even using the same algorithm, are allowed to mine different sets of association rules. We provide the groundwork to build our access control model over existing technologies and discuss some directions for future work.
Finding knowledge – or meaning – in data is the goal of every knowledge d- covery e?ort. Subsequent goals and questions regarding this knowledge di?er amongknowledgediscovery(KD) projectsandapproaches. Onecentralque...
详细信息
ISBN:
(数字)9783540476986
ISBN:
(纸本)9783540476979
Finding knowledge – or meaning – in data is the goal of every knowledge d- covery e?ort. Subsequent goals and questions regarding this knowledge di?er amongknowledgediscovery(KD) projectsandapproaches. Onecentralquestion is whether and to what extent the meaning extracted from the data is expressed in a formal way that allows not only humans but also machines to understand and re-use it, i. e. , whether the semantics are formal semantics. Conversely, the input to KD processes di?ers between KD projects and approaches. One central questioniswhetherthebackgroundknowledge,businessunderstanding,etc. that the analyst employs to improve the results of KD is a set of natural-language statements, a theory in a formal language, or somewhere in between. Also, the data that are being mined can be more or less structured and/or accompanied by formal semantics. These questions must be asked in every KD e?ort. Nowhere may they be more pertinent, however, than in KD from Web data (“Web mining”). Thisis due especially to the vast amounts and heterogeneity of data and ba- ground knowledge available for Web mining (content, link structure, and - age), and to the re-use of background knowledge and KD results over the Web as a global knowledge repository and activity space. In addition, the (Sem- tic) Web can serve as a publishing space for the results of knowledge discovery from other resources, especially if the whole process is underpinned by common ontologies.
暂无评论