咨询与建议

限定检索结果

文献类型

  • 4,639 篇 期刊文献
  • 4,164 篇 会议
  • 41 册 图书

馆藏范围

  • 8,844 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 5,608 篇 工学
    • 4,242 篇 计算机科学与技术...
    • 3,514 篇 软件工程
    • 1,191 篇 信息与通信工程
    • 769 篇 生物工程
    • 724 篇 控制科学与工程
    • 709 篇 电气工程
    • 532 篇 生物医学工程(可授...
    • 480 篇 光学工程
    • 461 篇 电子科学与技术(可...
    • 280 篇 机械工程
    • 248 篇 化学工程与技术
    • 202 篇 安全科学与工程
    • 197 篇 网络空间安全
    • 194 篇 交通运输工程
    • 180 篇 仪器科学与技术
    • 178 篇 动力工程及工程热...
  • 3,335 篇 理学
    • 1,761 篇 数学
    • 908 篇 物理学
    • 864 篇 生物学
    • 644 篇 统计学(可授理学、...
    • 298 篇 化学
    • 285 篇 系统科学
  • 1,593 篇 管理学
    • 918 篇 管理科学与工程(可...
    • 745 篇 图书情报与档案管...
    • 471 篇 工商管理
  • 533 篇 医学
    • 465 篇 临床医学
    • 398 篇 基础医学(可授医学...
    • 232 篇 公共卫生与预防医...
    • 222 篇 药学(可授医学、理...
  • 283 篇 法学
    • 241 篇 社会学
  • 164 篇 经济学
  • 106 篇 农学
  • 105 篇 教育学
  • 21 篇 文学
  • 12 篇 军事学
  • 7 篇 艺术学
  • 1 篇 历史学

主题

  • 276 篇 accuracy
  • 272 篇 deep learning
  • 231 篇 machine learning
  • 227 篇 feature extracti...
  • 219 篇 training
  • 184 篇 computational mo...
  • 180 篇 semantics
  • 161 篇 predictive model...
  • 144 篇 data models
  • 133 篇 real-time system...
  • 120 篇 federated learni...
  • 111 篇 optimization
  • 108 篇 convolutional ne...
  • 107 篇 reinforcement le...
  • 105 篇 graph neural net...
  • 94 篇 internet of thin...
  • 90 篇 artificial intel...
  • 88 篇 image segmentati...
  • 88 篇 neural networks
  • 87 篇 contrastive lear...

机构

  • 551 篇 college of compu...
  • 173 篇 university of ch...
  • 131 篇 nanyang technolo...
  • 103 篇 national enginee...
  • 102 篇 college of compu...
  • 98 篇 beijing advanced...
  • 97 篇 school of data a...
  • 84 篇 school of comput...
  • 81 篇 cas key lab of n...
  • 71 篇 shandong provinc...
  • 70 篇 school of comput...
  • 65 篇 national enginee...
  • 63 篇 department of co...
  • 60 篇 cas key laborato...
  • 50 篇 school of comput...
  • 50 篇 college of intel...
  • 47 篇 college of compu...
  • 46 篇 shandong enginee...
  • 44 篇 school of comput...
  • 41 篇 data science ins...

作者

  • 259 篇 niyato dusit
  • 157 篇 cheng xueqi
  • 70 篇 hai jin
  • 63 篇 guo jiafeng
  • 51 篇 sun geng
  • 51 篇 tao dacheng
  • 48 篇 jin hai
  • 44 篇 shen huawei
  • 37 篇 zheng wei-shi
  • 35 篇 peng hao
  • 35 篇 xiaofei liao
  • 31 篇 jin xiaolong
  • 30 篇 liu yang
  • 27 篇 e. j. siskind
  • 27 篇 r. bellazzini
  • 26 篇 shen linlin
  • 25 篇 chen chen
  • 25 篇 li jianxin
  • 25 篇 guo yike
  • 24 篇 j. b. thayer

语言

  • 7,512 篇 英文
  • 1,285 篇 其他
  • 74 篇 中文
  • 2 篇 斯洛文尼亚文
检索条件"机构=Computing and Data Science"
8844 条 记 录,以下是4921-4930 订阅
排序:
Searching for a new probability distribution for modeling non-scale-free heavy-tailed real-world networks
TechRxiv
收藏 引用
TechRxiv 2022年
作者: Chakraborty, Tanujit Chattopadhyay, Swarup Das, Suchismita Kumar, Uttam Jayavelu, Senthilnath Spatial Computing Laboratory Center for Data Sciences International Institute of Information Technology Bangalore560100 India Machine Intelligence Unit Indian Statistical Institute Kolkata700108 India Department of Data Science S P Jain School of Global Management Mumbai400070 India Institute for Infocomm Research Agency for Science Technology and Research 138632 Singapore
Perhaps the most controversial topic in network science research is whether real-world complex networks are scale-free or not. Recently, Broido and Clauset [A.D. Broido, A. Clauset, Nature Communication, 10, 1017 (201... 详细信息
来源: 评论
Multi-Graph Fusion Networks for Urban Region Embedding
arXiv
收藏 引用
arXiv 2022年
作者: Wu, Shangbin Yan, Xu Fan, Xiaoliang Pan, Shirui Zhu, Shichao Zheng, Chuanpan Cheng, Ming Wang, Cheng Fujian Key Laboratory of Sensing and Computing for Smart Cities School of Informatics Department of Computer Science and Technology Xiamen University China Department of Data Science and AI Faculty of Information Technology Monash University Australia University of Chinese Academy of Sciences China
Learning the embeddings for urban regions from human mobility data can reveal the functionality of regions, and then enables the correlated but distinct tasks such as crime prediction. Human mobility data contains ric... 详细信息
来源: 评论
Learning Informative Representation for Fairness-aware Multivariate Time-series Forecasting: A Group-based Perspective
arXiv
收藏 引用
arXiv 2023年
作者: He, Hui Zhang, Qi Wang, Shoujin Yi, Kun Niu, Zhendong Cao, Longbing The School of Medical Technology Beijing Institute of Technology Beijing100081 China The School of Computer Science and Technology Beijing Institute of Technology Beijing100081 China The Department of Computer Science Tongji University Shanghai201804 China The Data Science Institute University of Technology Sydney UltimoNSW2007 Australia The DataX Research Centre School of Computing Macquarie University SydneyNSW2109 Australia
Multivariate time series (MTS) forecasting penetrates various aspects of our economy and society, whose roles become increasingly recognized. However, often MTS forecasting is unfair, not only degrading their practica... 详细信息
来源: 评论
Few-Shot Class-Incremental Semantic Segmentation via Pseudo-Labeling and Knowledge Distillation
Few-Shot Class-Incremental Semantic Segmentation via Pseudo-...
收藏 引用
Information science, Parallel and Distributed Systems (ISPDS), International Conference on
作者: Chengjia Jiang Tao Wang Sien Li Jinyang Wang Shirui Wang Antonios Antoniou Fujian Provincial Key Laboratory of Information Processing and Intelligent Control Minjiang University Fuzhou China The Key Laboratory of Cognitive Computing and Intelligent Information Processing Fujian Education Institutions Wuyi University Wuyishan China College of Computer and Data Science Fuzhou University Fuzhou China Department of Computer Science and Engineering European University Cyprus Nicosia Cyprus
We address the problem of learning new classes for semantic segmentation models from few examples, which is challenging because of the following two reasons. Firstly, it is difficult to learn from limited novel data t...
来源: 评论
Gaf-Net: Graph Attention Fusion Network for Multi-View Semi-Supervised Classification
SSRN
收藏 引用
SSRN 2023年
作者: Song, Na Du, Shide Wu, Zhihao Zhong, Luying Wang, Shiping School of Computer Science and Technology Hainan University Hainan570228 China School of Mechanical Electrical and Information Engineering Putian University Putian351100 China College of Computer and Data Science Fuzhou University Fuzhou350116 China Fujian Provincial Key Laboratory of Network Computing and Intelligent Information Processing Fuzhou University Fuzhou350116 China
Multi-view semi-supervised classification is a typical task to classify data using a small amount of supervised information, which has attracted a lot of attention from researchers in past years. In practice, existing... 详细信息
来源: 评论
Incomplete Multi-view Clustering Based on Joint Concept Decomposition and Anchor Graph Learning  11th
Incomplete Multi-view Clustering Based on Joint Concept Dec...
收藏 引用
11th International Joint Conference on Rough Sets, IJCRS 2025
作者: Li, Zhuowen Chen, Hongmei Xiang, Biao Yuan, Zhong Luo, Chuan Li, Tianrui School of Computing and Artificial Intelligence Southwest Jiaotong University Chengdu 611756 China National Engineering Laboratory of Integrated Transportation Big Data Application Technology Southwest Jiaotong University Chengdu 611756 China Engineering Research Center of Sustainable Urban Intelligent Transportation Ministry of Education Chengdu 611756 China Manufacturing Industry Chains Collaboration and Information Support Technology Key Laboratory of Sichuan Province Southwest Jiaotong University Chengdu 611756 China College of Computer Science Sichuan University Chengdu 610065 China
The main objective of incomplete multi-view clustering is to effectively utilize the existing view information to fill in the missing data and to mine the complementary information and potential associations between m... 详细信息
来源: 评论
Dynamic Spatio-Temporal Specialization Learning for Fine-Grained Action Recognition
arXiv
收藏 引用
arXiv 2022年
作者: Li, Tianjiao Foo, Lin Geng Ke, Qiuhong Rahmani, Hossein Wang, Anran Wang, Jinghua Liu, Jun ISTD Pillar Singapore University of Technology and Design Singapore Department of Data Science & AI Monash University Australia School of Computing and Communications Lancaster University United Kingdom ByteDance China School of Computer Science and Technology Harbin Institute of Technology China
The goal of fine-grained action recognition is to successfully discriminate between action categories with subtle differences. To tackle this, we derive inspiration from the human visual system which contains speciali... 详细信息
来源: 评论
Aerial Reliable Collaborative Communications for Terrestrial Mobile Users via Evolutionary Multi-Objective Deep Reinforcement Learning
arXiv
收藏 引用
arXiv 2025年
作者: Sun, Geng Xiao, Jian Li, Jiahui Wang, Jiacheng Kang, Jiawen Niyato, Dusit Mao, Shiwen College of Computer Science and Technology Jilin University Changchun130012 China Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University Changchun130012 China affiliated with the College of Computing and Data Science Nanyang Technological University Singapore639798 Singapore School of Computer Science and Engineering Nanyang Technological University Singapore639798 Singapore School of Automation Guangdong University of Technology Guangzhou510641 China Department of Electrical and Computer Engineering Auburn University AuburnAL36849-5201 United States
Unmanned aerial vehicles (UAVs) have emerged as the potential aerial base stations (BSs) to improve terrestrial communications. However, the limited onboard energy and antenna power of a UAV restrict its communication... 详细信息
来源: 评论
Deep learning: Historical overview from inception to actualization, models, applications and future trends
收藏 引用
Applied Soft computing 2025年
作者: Olufisayo S. Ekundayo Absalom E. Ezugwu Unit for Data Science and Computing North-West University 11 Hoffman Street Potchefstroom 2520 North West South Africa
Deep learning stands at the forefront of contemporary machine learning techniques and is well-known for its outstanding predictive accuracy, adaptability to data variability, and remarkable ability to generalize acros... 详细信息
来源: 评论
Robustness of autoencoders for anomaly detection under adversarial impact  29
Robustness of autoencoders for anomaly detection under adver...
收藏 引用
29th International Joint Conference on Artificial Intelligence, IJCAI 2020
作者: Goodge, Adam Hooi, Bryan Ng, See Kiong Ng, Wee Siong School of Computing National University of Singapore Singapore Institute of Data Science National University of Singapore Singapore Institute for Infocomm Research A*STAR Singapore
Detecting anomalies is an important task in a wide variety of applications and domains. Deep learning methods have achieved state-of-the-art performance in anomaly detection in recent years;unsupervised methods being ... 详细信息
来源: 评论