咨询与建议

限定检索结果

文献类型

  • 1,665 篇 期刊文献
  • 1,071 篇 会议
  • 11 册 图书

馆藏范围

  • 2,747 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,682 篇 工学
    • 1,171 篇 计算机科学与技术...
    • 983 篇 软件工程
    • 287 篇 信息与通信工程
    • 268 篇 生物工程
    • 204 篇 生物医学工程(可授...
    • 194 篇 电气工程
    • 194 篇 控制科学与工程
    • 178 篇 光学工程
    • 149 篇 电子科学与技术(可...
    • 94 篇 化学工程与技术
    • 79 篇 机械工程
    • 67 篇 仪器科学与技术
    • 67 篇 安全科学与工程
    • 60 篇 材料科学与工程(可...
    • 54 篇 动力工程及工程热...
  • 1,226 篇 理学
    • 555 篇 数学
    • 422 篇 物理学
    • 318 篇 生物学
    • 221 篇 统计学(可授理学、...
    • 120 篇 化学
    • 106 篇 系统科学
    • 84 篇 地球物理学
  • 469 篇 管理学
    • 247 篇 图书情报与档案管...
    • 240 篇 管理科学与工程(可...
    • 112 篇 工商管理
  • 221 篇 医学
    • 187 篇 临床医学
    • 159 篇 基础医学(可授医学...
    • 90 篇 公共卫生与预防医...
    • 86 篇 药学(可授医学、理...
  • 72 篇 法学
    • 64 篇 社会学
  • 57 篇 农学
  • 45 篇 经济学
  • 39 篇 教育学
  • 10 篇 文学
  • 3 篇 军事学
  • 2 篇 艺术学

主题

  • 83 篇 deep learning
  • 80 篇 machine learning
  • 69 篇 accuracy
  • 66 篇 semantics
  • 62 篇 feature extracti...
  • 56 篇 training
  • 52 篇 computational mo...
  • 50 篇 data models
  • 49 篇 predictive model...
  • 42 篇 real-time system...
  • 38 篇 convolutional ne...
  • 33 篇 image segmentati...
  • 29 篇 deep neural netw...
  • 29 篇 graph neural net...
  • 29 篇 artificial intel...
  • 27 篇 neural networks
  • 27 篇 data mining
  • 26 篇 internet of thin...
  • 26 篇 analytical model...
  • 26 篇 forecasting

机构

  • 242 篇 university of ch...
  • 81 篇 cas key lab of n...
  • 75 篇 institute of com...
  • 68 篇 shandong provinc...
  • 64 篇 cas key laborato...
  • 56 篇 key laboratory o...
  • 46 篇 shandong enginee...
  • 46 篇 college of compu...
  • 44 篇 school of comput...
  • 32 篇 beijing advanced...
  • 32 篇 chongqing key la...
  • 30 篇 data science ins...
  • 28 篇 department of co...
  • 27 篇 dipartimento di ...
  • 27 篇 data intelligenc...
  • 26 篇 the oskar klein ...
  • 26 篇 department of br...
  • 26 篇 hiroshima astrop...
  • 25 篇 institut für ast...
  • 24 篇 peng cheng labor...

作者

  • 162 篇 cheng xueqi
  • 98 篇 guo jiafeng
  • 53 篇 shen huawei
  • 37 篇 lan yanyan
  • 33 篇 jin xiaolong
  • 29 篇 pang liang
  • 27 篇 e. j. siskind
  • 27 篇 r. bellazzini
  • 27 篇 fan yixing
  • 26 篇 j. b. thayer
  • 25 篇 p. spinelli
  • 25 篇 m. kuss
  • 25 篇 s. guiriec
  • 24 篇 s. ciprini
  • 24 篇 r. rando
  • 24 篇 huang qingming
  • 23 篇 p. a. caraveo
  • 23 篇 p. f. michelson
  • 23 篇 s. rainò
  • 23 篇 cao qi

语言

  • 2,429 篇 英文
  • 298 篇 其他
  • 18 篇 中文
检索条件"机构=Computing and Data Sciences"
2747 条 记 录,以下是81-90 订阅
排序:
Clear Text Visibility: A CNN-LSTM Approach for Frame of Interest Identification in Book Flipping Videos
Clear Text Visibility: A CNN-LSTM Approach for Frame of Inte...
收藏 引用
2024 IEEE International Conference on Modeling, Simulation and Intelligent computing, MoSICom 2024
作者: Buddhawar, Gaurav Dave, Dharin Jariwala, Krupa Chattopadhyay, Chiranjoy Sardar Vallabhbhai National Institute of Technology Dept. of Computer Science and Engineering Surat India Pune India Flame University School of Computing and Data Sciences Pune India
Book flipping videos present a distinctive challenge for information extraction, requiring the identification of frames with clear text visibility during dynamic page turns. This paper introduces a novel approach to f... 详细信息
来源: 评论
Exploring Multimodal Generative AI for Education through Co-design Workshops with Students  25
Exploring Multimodal Generative AI for Education through Co-...
收藏 引用
2025 CHI Conference on Human Factors in computing Systems, CHI 2025
作者: Prasad, Prajish Balse, Rishabh Balchandani, Dhwani School of Computing and Data Sciences FLAME University Pune India Department of Computer Science and Technology University of Cambridge Cambridge United Kingdom
Multimodal large language models (MLLMs) are Generative AI models that take different modalities such as text, audio, and video as input and generate appropriate multimodal output. Since such models will be integrated... 详细信息
来源: 评论
Designing Healthcare Relational Agents: A Conceptual Framework with User-Centered Design Guidelines  28
Designing Healthcare Relational Agents: A Conceptual Framewo...
收藏 引用
28th IEEE Symposium on Computers and Communications, ISCC 2023
作者: Islam, Ashraful Chaudhry, Beenish Moalla Islam, Aminul Center for Computational and Data Sciences Independent University Bangladesh Dhaka Bangladesh School of Computing and Informatics University of Louisiana at Lafayette Louisiana United States
This paper presents a conceptual framework for designing relational agents (RAs) in healthcare contexts, developed through the findings from multiple user studies on RAs about their acceptance, efficacy, and usability... 详细信息
来源: 评论
On RNN-Based k-WTA Models With Time-Dependent Inputs
收藏 引用
IEEE/CAA Journal of Automatica Sinica 2022年 第11期9卷 2034-2036页
作者: Mei Liu Mingsheng Shang the Chongqing Key Laboratory of Big Data and Intelligent Computing Chongqing Institute of Green and Intelligent TechnologyChinese Academy of SciencesChongqing 400714 the Chongqing School University of Chinese Academy of SciencesChongqing 400714China
Dear editor,This letter identifies two weaknesses of state-of-the-art k-winnerstake-all(k-WTA)models based on recurrent neural networks(RNNs)when considering time-dependent inputs,i.e.,the lagging error and the infeas... 详细信息
来源: 评论
Intelligent Compound Selection of Anti-cancer Drugs Based on Multi-Objective Optimization
Intelligent Compound Selection of Anti-cancer Drugs Based on...
收藏 引用
2023 International Conference on Intelligent Supercomputing and BioPharma, ISBP 2023
作者: Liu, Xiaoyan Xu, Zhiwei Liu, Guangwen Liu, Limin Inner Mongolia University of Technology College of Data Science and Application Hohhot China Chinese Academy of Sciences Institute of Computing Technology Beijing China
In the compound selection process of anti-cancer drugs, safety properties such as drug activity and pharmacokinetics need to be considered simultaneously. To construct a more complete and precise drug screening mechan... 详细信息
来源: 评论
Machine Learning Approaches for Region-level Prescription Demand Forecasting  9
Machine Learning Approaches for Region-level Prescription De...
收藏 引用
9th IEEE Smart World Congress, SWC 2023
作者: Wang, Xu Chen, Long Wang, Jiangtao Zheng, Dingchang Coventry University Centre for Intelligent Healthcare Coventry United Kingdom Coventry University School of Computing Mathematics and Data Sciences Coventry United Kingdom
Region-level prescription demand is closely intertwined with the incidence of diseases within a given area. However, conventional forecasting methods primarily rely on historical data, and ignore the spatial correlati... 详细信息
来源: 评论
Hash Table Notional Machines: A Comparison of 2D and 3D Representations  2024
Hash Table Notional Machines: A Comparison of 2D and 3D Repr...
收藏 引用
1st ACM Virtual Global computing Education Conference V. 1, SIGCSE Virtual 2024
作者: Lewis, Colleen M. Miller, Craig S. Jeuring, Johan Pearce, Janice L. Petersen, Andrew Siebel School of Computing and Data Science University of Illinois Urbana-Champaign UrbanaIL United States School of Computing DePaul University ChicagoIL United States Department of Information and Computing Sciences Utrecht University Utrecht Netherlands Department of Computer Science Berea College BereaKY United States Department of Mathematical and Computational Sciences University of Toronto Mississauga MississaugaON Canada
Background: Notional machines appear to be an essential aspect of computing education, but there are few papers that identify strengths and weaknesses of particular notional machines. Purpose: This article fills a gap... 详细信息
来源: 评论
Preventing Fraud in E-tickets Validation Using The 2FA Approach  5
Preventing Fraud in E-tickets Validation Using The 2FA Appro...
收藏 引用
5th International Conference on Computer and Applications, ICCA 2023
作者: Alnuaimi, Lolwa Hassan Jaam, Jihad Al John Moores University School of Computing and Data Sciences Dept. of Computer Science Oryx Universal College in Partnership with Liverpool Doha Qatar
Electronic ticketing (e-ticket) systems employing QR codes or barcodes are essential in the digital era but come with cybersecurity risks like fraud, counterfeiting, and ticket scalping. This study explores the cybers... 详细信息
来源: 评论
Machine Learning and Synthetic Minority Oversampling Techniques for Imbalanced data: Improving Machine Failure Prediction
收藏 引用
Computers, Materials & Continua 2023年 第6期75卷 4821-4841页
作者: Yap Bee Wah Azlan Ismail Nur Niswah Naslina Azid Jafreezal Jaafar Izzatdin Abdul Aziz Mohd Hilmi Hasan Jasni Mohamad Zain Institute for Big Data Analytics and Artificial Intelligence(IBDAAI) Kompleks Al-KhawarizmiUniversiti Teknologi MARA(UiTM)Shah Alam40450SelangorMalaysia School of Computing Sciences College of ComputingInformatics and MediaUniversiti Teknologi MARA(UiTM)40450Shah AlamSelangorMalaysia Mathematical Sciences Studies College of ComputingInformatics and MediaUniversiti Teknologi MARA(UiTM)Kelantan BranchMachang CampusBukit Ilmu18500MachangKelantan Darul NaimMalaysia Centre for Research in Data Science(CeRDaS) Department of Computer and Information Sciences(DCIS)Universiti Teknologi PETRONAS(UTP)Seri Iskandar32610PerakMalaysia UNITAR International University Jalan SS6/3SS6Petaling Jaya47301SelangorMalaysia
Prediction of machine failure is challenging as the dataset is often imbalanced with a low failure *** common approach to han-dle classification involving imbalanced data is to balance the data using a sampling approa... 详细信息
来源: 评论
Augmentation-Aware Self-Supervision for data-Efficient GAN Training  37
Augmentation-Aware Self-Supervision for Data-Efficient GAN T...
收藏 引用
37th Conference on Neural Information Processing Systems, NeurIPS 2023
作者: Hou, Liang Cao, Qi Yuan, Yige Zhao, Songtao Ma, Chongyang Pan, Siyuan Wan, Pengfei Wang, Zhongyuan Shen, Huawei Cheng, Xueqi CAS Key Laboratory of AI Safety and Security Institute of Computing Technology Chinese Academy of Sciences China CAS Key Laboratory of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences China Kuaishou Technology China
Training generative adversarial networks (GANs) with limited data is challenging because the discriminator is prone to overfitting. Previously proposed differentiable augmentation demonstrates improved data efficiency... 详细信息
来源: 评论