The integration of the Industrial Internet of Things (IIoT) brings about a significant improvement in the efficiency and productivity of industrial processes. The speed and accuracy of various tasks have been greatly ...
详细信息
Hybrid memory systems composed of dynamic random access memory(DRAM)and Non-volatile memory(NVM)often exploit page migration technologies to fully take the advantages of different memory *** previous proposals usually...
详细信息
Hybrid memory systems composed of dynamic random access memory(DRAM)and Non-volatile memory(NVM)often exploit page migration technologies to fully take the advantages of different memory *** previous proposals usually migrate data at a granularity of 4 KB pages,and thus waste memory bandwidth and DRAM *** this paper,we propose Mocha,a non-hierarchical architecture that organizes DRAM and NVM in a flat address space physically,but manages them in a cache/memory *** the commercial NVM device-Intel Optane DC Persistent Memory Modules(DCPMM)actually access the physical media at a granularity of 256 bytes(an Optane block),we manage the DRAM cache at the 256-byte size to adapt to this feature of *** design not only enables fine-grained data migration and management for the DRAM cache,but also avoids write amplification for Intel Optane *** also create an Indirect Address Cache(IAC)in Hybrid Memory Controller(HMC)and propose a reverse address mapping table in the DRAM to speed up address translation and cache ***,we exploit a utility-based caching mechanism to filter cold blocks in the NVM,and further improve the efficiency of the DRAM *** implement Mocha in an architectural *** results show that Mocha can improve application performance by 8.2%on average(up to 24.6%),reduce 6.9%energy consumption and 25.9%data migration traffic on average,compared with a typical hybrid memory architecture-HSCC.
Fog computing has the capability to perform tasks in the local distributed environment within the expected time period. The approaches used for managing the faults in a fog computing environment are not competent to r...
详细信息
The condition known as Cardio Vascular Disease can result in heart attacks, Angina, and brain assaults due to the restriction of blood flow to the myocardium. Among the most important causes of death and mortality wor...
详细信息
Oral Squamous Cell Carcinoma (OSCC) is the leading cancer caused due to the immense growth of malignant cells in different regions of the oral cavity particularly in the area of the neck and head. The habits of smokin...
详细信息
Anticipating the imminent surge of retired lithium-ion batteries(R-LIBs)from electric vehicles,the need for safe,cost-effective and environmentally friendly disposal technologies has *** paper seeks to offer a compreh...
详细信息
Anticipating the imminent surge of retired lithium-ion batteries(R-LIBs)from electric vehicles,the need for safe,cost-effective and environmentally friendly disposal technologies has *** paper seeks to offer a comprehensive overview of the entire disposal framework for R-LIBs,encompassing a broad spectrum of activities,including screening,repurposing and ***,we delve deeply into a thorough examination of current screening technologies,shifting the focus from a mere enumeration of screening methods to the exploration of the strategies for enhancing screening ***,we outline battery repurposing with associated key factors,summarizing stationary applications and sizing methods for R-LIBs in their second life.A particular light is shed on available reconditioning solutions,demonstrating their great potential in facilitating battery safety and lifetime in repurposing scenarios and identifying their techno-economic *** the realm of battery recycling,we present an extensive survey of pre-treatment options and subsequent material recovery ***,we introduce several global leading recyclers to illustrate their industrial processes and technical ***,relevant challenges and evolving trends are investigated in pursuit of a sustainable end-of-life management and disposal *** hope that this study can serve as a valuable resource for researchers,industry professionals and policymakers in this field,ultimately facilitating the adoption of proper disposal practices.
Numerous methods are analysed in detail to improve task schedulingand data security performance in the cloud environment. The methodsinvolve scheduling according to the factors like makespan, waiting time,cost, deadli...
详细信息
Numerous methods are analysed in detail to improve task schedulingand data security performance in the cloud environment. The methodsinvolve scheduling according to the factors like makespan, waiting time,cost, deadline, and popularity. However, the methods are inappropriate forachieving higher scheduling performance. Regarding data security, existingmethods use various encryption schemes but introduce significant serviceinterruption. This article sketches a practical Real-time Application CentricTRS (Throughput-Resource utilization–Success) Scheduling with Data Security(RATRSDS) model by considering all these issues in task scheduling anddata security. The method identifies the required resource and their claim timeby receiving the service requests. Further, for the list of resources as services,the method computes throughput support (Thrs) according to the number ofstatements executed and the complete statements of the service. Similarly, themethod computes Resource utilization support (Ruts) according to the idletime on any duty cycle and total servicing time. Also, the method computesthe value of Success support (Sus) according to the number of completions forthe number of allocations. The method estimates the TRS score (ThroughputResource utilization Success) for different resources using all these supportmeasures. According to the value of the TRS score, the services are rankedand scheduled. On the other side, based on the requirement of service requests,the method computes Requirement Support (RS). The selection of service isperformed and allocated. Similarly, choosing the route according to the RouteSupport Measure (RSM) enforced route security. Finally, data security hasgets implemented with a service-based encryption technique. The RATRSDSscheme has claimed higher performance in data security and scheduling.
Video abnormality behavior identification plays a pivotal role in improving the safety and security of surveillance systems by identifying unusual events within video streams. However, existing methods face challenges...
详细信息
Lung cancer is a prevalent and deadly disease worldwide, necessitating accurate and timely detection methods for effective treatment. Deep learning-based approaches have emerged as promising solutions for automated me...
详细信息
Emerging telemedicine trends,such as the Internet of Medical Things(IoMT),facilitate regular and efficient interactions between medical devices and computing *** importance of IoMT comes from the need to continuously ...
详细信息
Emerging telemedicine trends,such as the Internet of Medical Things(IoMT),facilitate regular and efficient interactions between medical devices and computing *** importance of IoMT comes from the need to continuously monitor patients’health conditions in real-time during normal daily activities,which is realized with the help of various wearable devices and *** major health problem is workplace stress,which can lead to cardiovascular disease or psychiatric ***,real-time monitoring of employees’stress in the workplace is *** levels and the source of stress could be detected early in the fog layer so that the negative consequences can be mitigated ***,overwhelming the fog layer with extensive data will increase the load on fog nodes,leading to computational *** study aims to reduce fog computation by proposing machine learning(ML)models with two *** first phase of theMLmodel assesses the priority of the situation based on the stress *** the second phase,a classifier determines the cause of stress,which was either interruptions or time pressure while completing a *** approach reduced the computation cost for the fog node,as only high-priority records were transferred to the ***-priority records were forwarded to the *** MLapproaches were compared in terms of accuracy and prediction speed:Knearest neighbors(KNN),a support vector machine(SVM),a bagged tree(BT),and an artificial neural network(ANN).In our experiments,ANN performed best in both phases because it scored an F1 score of 99.97% and had the highest prediction speed compared with KNN,SVM,and BT.
暂无评论