Since the signing of the Contract Design Plane for the CVN 68 (the U.S. Navy's latest Class of Aircraft Carriers) In 1963, considerable technological advances have been made in Naval Ship Design. This paper provid...
Since the signing of the Contract Design Plane for the CVN 68 (the U.S. Navy's latest Class of Aircraft Carriers) In 1963, considerable technological advances have been made in Naval Ship Design. This paper provides specific examples of how new technology has affected traditional Carrier design practices and techniques, and also indicates areas where future advanced technology will be needed. It is divided into four sections: 1) Computer Design Application; 2) Total Ship Energy Conservation Analysis; 3) Advances in Structural Design; and 4) Impact of V/STOL Aircraft. The increased use of the computer to define ship characteristics in the initial stage of ship design is discussed, followed by a report on efforts to include energy conservation as an integral part of the design process. The energy conservation approach uses traditional analytical techniques to develop innovative design configurations that will achieve energy savings. Of the many advances in Carrier structural design, two specific examples are given: 1) Elimination of the infamous “knee-knockers” (high sills in passageway openings) common to Gallery Deck structure, and 2) Successful attempts at reducing the thickness of aircraft elevator platforms. The paper concludes by pointing out some possible challenges facing the ship designer and some of the technology already created by the expected introduction of advanced design Vertical/Short Takeoff and Landing (V/STOL) aircraft.
作者:
CHILDERS, RADM.K.C.GLOECKLER, FREDERICK M.STEVENS, ROBERT M.USN (RET.)RAdm. K.C. Childers
USN (Ret.):graduated from the U.S. Naval Academy in 1939. and later completed his graduate studies at California Institute of Technology from which he received his MS and AE degrees. He was a fighter pilot in the aircraft carriers USS Ranger and USS Essex during World War II and an instructor at the Guided Missile School. Ft. Bliss Texas from 1947 until 1949 at which time he came to Washington. D.C. as an Assistant Division Director Ships Installation Division Bureau of Aeronautics. In addition his active duty career included assignments as Naval Air Systems Command Representative Atlantic Assistant Commander for Material Acquisition
Naval Air Systems Command and Deputy Project Manager for the FlllB/Phoenix Program. Bureau of Naval Weapons. During the first five years of the Polaris Program
he was responsible for all testing at the Atlantic Missile Range. He also served as Commander of the Naval Missile Center where he directed the test and evaluation of Airborne Weapon Systems and had been on an earlier assignment the Missile Test Officer. His military decorations include the Silver Star the Legion of Merit two Air Medals the Navy Commendation Medal and a Presidential Unit Citation. Currently he is employed as the Manager of the Analysis and Evaluation Department at CERBERONICS. Inc. Falls Church. Va. Mr. Frederick M. Gloeckler:
currently a Consultant to CERBERONICS Inc. graduated from New York University from which he received his BS degree. He began his career with the Department of the Navy in 1938. and culminated it with his retirement in 1972 at which time he was engaged in VSTOL aircraft analysis and was the Director Advanced Systems Division Naval Air Systems Command (and its predecessor organizations). During this period he made major contributions to the Fleet Ballistic Missile Program the F-14
A-7 and S-3 Aircraft Programs and the Phoenix
Condor and Harpoon Missile Programs. In 1951 Mr. Gloeckler organized‘ and directed the Systems Engineering Divis
作者:
PLATO, ARTIS I.GAMBREL, WILLIAM DAVIDArtis I. Plato:is Head of the Design Work Study/ Shipboard Manning/Human Factors Engineering Section
Systems Engineering and Analysis Branch Naval Ship Engineering Center (NAVSEC). He graduated from the City College of New York in 1956 receiving his Bachelor of Mechanical Engineering degree. Following this he started work at the New York Naval Shipyard in the Internal Combustion Engine and Cargo Elevator Section. During 1957 and 1958 he was called up for active duty with the U.S. Army Corps of Engineers and served in Europe with a Construction Engineer Battalion. After release from active duty he returned to the shipyard where he remained until 1961 when he transferred to the Naval Supply Research and Development Facility Bayonne New Jersey. Initially he was in charge of an Engineering Support Test Group and the drafting services for the whole Facility. Later he became a Project Engineer in the Food Services Facilities Branch with duties that included planning and designing new afloat and ashore messing facilities for the Navy. In 1966 he transferred to NAVSEC as a Project Engineer in the Design Work Study Section and in this capacity worked on selected projects and manning problems for new construction and also developed a computer program (Manpower Determination Model) that makes accurate crew predictions for feasibility studies. In 1969 he became Head of the Section. He has been active in the U.S. Army Reserve since his release from active duty and his duties have included command of an Engineer Company various Staff positions and his present assignment as Operations Officer for a Civil Affairs Group. He has completed the U. S. A rmy Corps of Engineers Career Course and the Civil Affairs Career Course and is presently enrolled in the U.S. Army Command and General Staff College non-resident course. Additionally he completed graduate studies at American University Washington D.C in 1972 receiving his MSTM degree in Technology of Management and is a member of ASE ASME CAA U. S. Naval Instit
The purpose of this paper is to discuss a system analysis technique called “Design Work Study”, that is used by the U.S. Navy for the development of improved ship control systems. The Design Work Study approach is o...
作者:
NACHTSHEIM, JOHN J.BALLOU, L. DENNISJohn J. Nachtsheim:is currently the Deputy Assistant Administrator for Research & Development for the Maritime Administration. His duties are the planning
coordinating organizing evaluating and directing of the R&D activities of MarAd. His past experiences include: Naval Architect for the Naval Ship Engineering Center 1959 Deputy Chief Design Engineer for the Puget Sound Naval Shipyard
1958 to 1959 and Naval Architect
the former Bureau of Ships 1948 to 1958. His education is comprised of a B.S. degree from the Webb Institute of Naval Architecture an L.L.B. degree from the George Washington University Law School completion of the Advanced Management Program at Harvard University and current study of Transportation at the American University. He is a Registered Professional Engineer in the District of Columbia and a Member of the Bar in the District of Columbia and the State of Maryland. In addition to ASNE his other professional memberships include the Society of Naval Architects and Marine Engineers the Society of Aeronautical Weight Engineers and the Association of Senior Engineers of the Naval Ships Systems Command (Honorary). USNCommander L. Dennis Ballou:
USN is the Head of the Engineering Service Office Naval Ship Engineering Center. He is involved in computer hardware and software services to support engineering design automatic data processing systems design work study and quality assurance. Prior to NavSec duty Commander Ballou served in various billets afloat and ashore: tours on the USS Skagit and Tang supervision of the USS Skipjack's first overhulconstruction of the USS Nathanael Greene and helping to establish the Polaris overhaul program. He is a graduate of the U.S. Naval Academy
Officers' Submarine School and the Webb Institute of Naval Architecture. He holds BS and MS degrees in marine engineering and naval architecture respectively. He has also completed many graduate
This book focuses on how to maintain environmental sustainability as one of its main principles, and it addresses how smart cities serve to diminish wastes and maintain natural resources by having clean green energy t...
详细信息
ISBN:
(数字)9783030642174
ISBN:
(纸本)9783030642167
This book focuses on how to maintain environmental sustainability as one of its main principles, and it addresses how smart cities serve to diminish wastes and maintain natural resources by having clean green energy that is operated by new smart technology designs. Living in a smart city is not something of the future anymore, it is here, and it is being implemented all over the world. A smart city uses different types of electronic Internet of things (IoT) sensors to collect data and then use these data to manage assets and resources efficiently. The smart city concept integrates information and communication technology (ICT), and various physical devices connected to the IoT network to optimize the efficiency of city operations and services and achieve sustainable solutions to allow us to grow with proper management of our resources.;Smart sustainable structures and infrastructures face the need of urban areas due to the growth of populations while in the same timesave our environment. To achieve this, we need to revisit the conventional methods in design and construction and the conventional materials which are used now to optimize the design and provide smart solutions. In the past few years, the consumption of resources has been massive, and the waste produced from that consumption has been inconceivable. This is causing environmental degradation, which produces many environmental challenges, such as global climate change, excessive fossil fuel dependency and the growing demand for energy.;As well as, discussing the challenges facing the civilengineering design and construction of smart cities components and presenting concepts and insight from experts and researchers from different civilengineering disciplines., this book explains how to construct buildings and special structures and how to manage and monitor energy.
暂无评论