Smart farming technology allows farmers to control and analyse variables in real-time, helping them optimize crop growth and manage their operations more efficiently. The use of specialized sensors, data collection to...
详细信息
Millions of individuals globally experience spinal ailments. This stresses the importance of swift detection for achieving better treatment results. Traditional diagnosis techniques can be lengthy. They might lack pre...
详细信息
The proliferation of deepfake videos on social media has raised huge issues about disinformation, identity manipulation, and fraud. Advanced AI techniques now enable the creation of pretty convincing fake films, posin...
详细信息
Recent advances in Machine Learning (ML) brought several advantages also within computer network management. For programmable data planes, however, it is more challenging to benefit from these advantages, given their ...
详细信息
Fog networking is an aspect of the IoT (Internet of Things) idea, which sees most of the products used by humans on a daily basis connected to one another. Smart phones, smart health monitoring equipment, as...
详细信息
Facial Expression Recognition (FER) aims to detect the emotional state of facial images. It is playing an increasingly important role in several application areas, including human–computer interaction (HCI), video tr...
详细信息
As global digitization continues to grow, technology becomes more affordable and easier to use, and social media platforms thrive, becoming the new means of spreading information and news. Communities are built around...
详细信息
As global digitization continues to grow, technology becomes more affordable and easier to use, and social media platforms thrive, becoming the new means of spreading information and news. Communities are built around sharing and discussing current events. Within these communities, users are enabled to share their opinions about each event. Using Sentiment Analysis to understand the polarity of each message belonging to an event, as well as the entire event, can help to better understand the general and individual feelings of significant trends and the dynamics on online social networks. In this context, we propose a new ensemble architecture, EDSAEnsemble (Event Detection Sentiment Analysis Ensemble), that uses Event Detection and Sentiment Analysis to improve the detection of the polarity for current events from Social Media. For Event Detection, we use techniques based on Information Diffusion taking into account both the time span and the topics. To detect the polarity of each event, we preprocess the text and employ several Machine and Deep Learning models to create an ensemble model. The preprocessing step includes several word representation models: raw frequency, TFIDF, Word2Vec, and Transformers. The proposed EDSA-Ensemble architecture improves the event sentiment classification over the individual Machine and Deep Learning models. Authors
Cloud workloads are highly dynamic and complex,making task scheduling in cloud computing a challenging *** several scheduling algorithms have been proposed in recent years,they are mainly designed to handle batch task...
详细信息
Cloud workloads are highly dynamic and complex,making task scheduling in cloud computing a challenging *** several scheduling algorithms have been proposed in recent years,they are mainly designed to handle batch tasks and not well-suited for real-time *** address this issue,researchers have started exploring the use of Deep Reinforcement Learning(DRL).However,the existing models are limited in handling independent tasks and cannot process workflows,which are prevalent in cloud computing and consist of related *** this paper,we propose SA-DQN,a scheduling approach specifically designed for real-time cloud *** approach seamlessly integrates the Simulated Annealing(SA)algorithm and Deep Q-Network(DQN)*** SA algorithm is employed to determine an optimal execution order of subtasks in a cloud server,serving as a crucial feature of the task for the neural network to *** provide a detailed design of our approach and show that SA-DQN outperforms existing algorithms in terms of handling real-time cloud workflows through experimental results.
In the Kingdom of Saudi Arabia, visual impairment poses significant challenges for approximately 17.5% of school-aged children, mainly due to refractive errors. These challenges extend to everyday navigation, environm...
详细信息
In the Kingdom of Saudi Arabia, visual impairment poses significant challenges for approximately 17.5% of school-aged children, mainly due to refractive errors. These challenges extend to everyday navigation, environmental interaction, and overall life quality. Motivated by the desire to empower visually impaired individuals, who face navigational limitations, difficulties in object recognition, and inadequate assistance from traditional technologies, we propose SightAid. This innovative wearable vision system utilizes a deep learning-based framework, addressing the gaps left by current assistive solutions. Traditional methods, such as canes and GPS devices, often fail to meet the nuanced and dynamic needs of the visually impaired, especially in accurately identifying objects, understanding complex environments, and providing essential real-time feedback for independent navigation. SightAid comprises a seven-phase framework involving data collection, preprocessing, and training of a sophisticated deep neural network with multiple convolutional and fully connected layers. This system is integrated into smart glasses with augmented reality displays, enabling real-time object detection and recognition. Interaction with users is facilitated through audio or haptic feedback, informing them about the location and type of objects detected. A continuous learning mechanism, incorporating user feedback and new data, ensures the system's ongoing refinement and adaptability. For performance assessment, we utilized the MNIST dataset, and an Indoor Objects Detection dataset tailored for the visually impaired, featuring images of everyday objects crucial for safe indoor navigation. SightAid demonstrates remarkable performance with accuracy up to 0.9874, recall values between 0.98 and 0.99, F1-scores ranging from 0.98 to 0.99, and AUC-ROC values reaching as high as 0.9999. These metrics significantly surpass those of traditional methods, highlighting SightAid's potential to substan
暂无评论