咨询与建议

限定检索结果

文献类型

  • 520 篇 会议
  • 433 篇 期刊文献

馆藏范围

  • 953 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 629 篇 工学
    • 282 篇 计算机科学与技术...
    • 260 篇 软件工程
    • 205 篇 控制科学与工程
    • 144 篇 电气工程
    • 93 篇 机械工程
    • 93 篇 信息与通信工程
    • 83 篇 动力工程及工程热...
    • 77 篇 电子科学与技术(可...
    • 52 篇 生物工程
    • 47 篇 生物医学工程(可授...
    • 43 篇 仪器科学与技术
    • 42 篇 化学工程与技术
    • 41 篇 光学工程
    • 31 篇 交通运输工程
    • 26 篇 土木工程
    • 19 篇 安全科学与工程
    • 17 篇 材料科学与工程(可...
  • 365 篇 理学
    • 196 篇 数学
    • 86 篇 系统科学
    • 73 篇 物理学
    • 62 篇 统计学(可授理学、...
    • 60 篇 生物学
    • 38 篇 化学
  • 121 篇 管理学
    • 83 篇 管理科学与工程(可...
    • 32 篇 图书情报与档案管...
    • 25 篇 工商管理
  • 46 篇 医学
    • 40 篇 临床医学
    • 32 篇 基础医学(可授医学...
    • 24 篇 药学(可授医学、理...
  • 14 篇 经济学
    • 14 篇 应用经济学
  • 14 篇 法学
  • 8 篇 农学
  • 5 篇 艺术学
  • 4 篇 教育学
  • 2 篇 军事学

主题

  • 24 篇 feature extracti...
  • 21 篇 optimization
  • 19 篇 training
  • 17 篇 computational mo...
  • 16 篇 control systems
  • 15 篇 neural networks
  • 15 篇 data mining
  • 14 篇 mathematical mod...
  • 13 篇 object detection
  • 13 篇 stability analys...
  • 13 篇 predictive model...
  • 12 篇 trajectory
  • 12 篇 genetic algorith...
  • 12 篇 machine learning
  • 12 篇 robustness
  • 11 篇 deep learning
  • 11 篇 automation
  • 11 篇 image segmentati...
  • 11 篇 linear systems
  • 11 篇 heuristic algori...

机构

  • 85 篇 school of contro...
  • 51 篇 state key labora...
  • 23 篇 state key labora...
  • 21 篇 department of au...
  • 21 篇 key laboratory o...
  • 17 篇 department of au...
  • 16 篇 control and inte...
  • 14 篇 department of au...
  • 13 篇 science and tech...
  • 13 篇 college of compu...
  • 11 篇 hubei province k...
  • 10 篇 shanxi key labor...
  • 10 篇 school of comput...
  • 10 篇 key laboratory o...
  • 10 篇 systems and cont...
  • 10 篇 school of contro...
  • 9 篇 control system g...
  • 9 篇 key laboratory o...
  • 9 篇 state key labora...
  • 9 篇 key laboratory o...

作者

  • 31 篇 zongli lin
  • 18 篇 hamid soltanian-...
  • 17 篇 xiao feng
  • 15 篇 fang fang
  • 14 篇 zhongwei lin
  • 13 篇 kang li
  • 13 篇 lin zhongwei
  • 13 篇 yin xiang
  • 13 篇 feng xiao
  • 12 篇 yuanlong li
  • 12 篇 jianhua zhang
  • 11 篇 liu jizhen
  • 11 篇 jizhen liu
  • 11 篇 ai bo
  • 11 篇 wang hesheng
  • 10 篇 liu zhe
  • 10 篇 cong runmin
  • 10 篇 sang shengbo
  • 10 篇 guan xinping
  • 9 篇 soltanian-zadeh ...

语言

  • 857 篇 英文
  • 75 篇 其他
  • 20 篇 中文
检索条件"机构=Control System and Computer Laboratory"
953 条 记 录,以下是171-180 订阅
排序:
Resilient Event-Triggered Distributed Resource Allocation for Multi-agent systems Under DoS Attacks  5th
Resilient Event-Triggered Distributed Resource Allocation fo...
收藏 引用
5th China Conference on Intelligent Networked Things, CINT 2022
作者: Cai, Xin Xiao, Feng Wei, Bo State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources North China Electric Power University Beijing102206 China School of Control and Computer Engineering North China Electric Power University Beijing102206 China School of Electrical Engineering Xinjiang University Urumqi830047 China
This paper presents a resilient event-triggered distributed algorithm for resource allocation of multi-agent systems under denial-of-service (DoS) attacks. A class of time-sequence-based and aperiodic DoS attacks exis... 详细信息
来源: 评论
Sleep When Everything Looks Fine: Self-Triggered Monitoring for Signal Temporal Logic Tasks
arXiv
收藏 引用
arXiv 2023年
作者: Wang, Chuwei Yu, Xinyi Zhao, Jianing Lindemann, Lars Yin, Xiang Department of Automation Key Laboratory of System Control and Information Processing Shanghai Jiao Tong University Shanghai200240 China Department of Computer Science University of Southern California Los AngelesCA90089 United States
Online monitoring is a widely used technique in assessing if the performance of the system satisfies some desired requirements during run-time operation. Existing works on online monitoring usually assume that the mon... 详细信息
来源: 评论
Multi-Segment Droop control and Optimal Parameter Setting Strategy of Wind Turbine for Frequency Regulation
SSRN
收藏 引用
SSRN 2023年
作者: Gao, Haishu Zhang, Feng Ding, Lei Cornélusse, Bertrand State Key Laboratory of Power System Intelligent Dispatch and Control of Ministry of Education Shandong University Jinan250061 China Departments of Computer Science Electrical Engineering and Geography University of Liège Liège Belgium
Traditionally virtual inertia is the control strategy of wind turbines when participating in frequency regulation. However, it has inherent defects in measurement error amplification, due to the frequency differential... 详细信息
来源: 评论
Weakly Supervised and Semi-Supervised Semantic Segmentation Makes Full Use of a Small Amount of Labeled Data
SSRN
收藏 引用
SSRN 2023年
作者: Zhang, Wenming Li, Yaqian Li, Haibin Wang, Zhe Engineering Research Center Ministry of Education for Intelligent Control System and Intelligent Equipment Yanshan University Qinhuangdao China Key Laboratory of Industrial Computer Control Engineering of Hebei Province Yanshan University Qinhuangdao China School of Electrical Engineering Yanshan University Qinhuangdao066004 China
Semi-supervised and weakly supervised semantic segmentation are very challenging tasks and have been studied in recent years. The purpose is to reduce the high cost of semantic segmentation label production. In this p... 详细信息
来源: 评论
LU2Net: A Lightweight Network for Real-time Underwater Image Enhancement
arXiv
收藏 引用
arXiv 2024年
作者: Yang, Haodong Xu, Jisheng Lin, Zhiliang He, Jianping The Department of Computer Science Shanghai Jiao Tong University China The Department of Automation Shanghai Jiao Tong University Key Laboratory of System Control and Information Processing Ministry of Education of China Shanghai Engineering Research Center of Intelligent Control and Management Shanghai200240 China The School of Ocean and Civil Engineering Shanghai Jiao Tong University State Key Laboratory of Ocean Engineering Shanghai200240 China
computer vision techniques have empowered underwater robots to effectively undertake a multitude of tasks, including object tracking and path planning. However, underwater optical factors like light refraction and abs... 详细信息
来源: 评论
HRTS: Hierarchical Rauch-Tung-Striebel Smoother With Online Learning Priors for EEG Denoising
Journal of Network Intelligence
收藏 引用
Journal of Network Intelligence 2024年 第2期9卷 673-688页
作者: Wang, Chuan-Sheng Zhang, Ling Fu, Tian-Lin Chen, Zhao-Qi Zhang, Fu-Quan Department of Automatic Control Technical Polytechnic University of Catalonia Autonomous Region of Catalonia Barcelona Spain School of Computer and Data Science Minjiang University No.200 Xiyuangong Road Fuzhou University Town Fujian Province Fuzhou City China College of Computer and Big Data Fuzhou University No.2 Wulongjiang North Road Fuzhou University Town Fujian Province Fuzhou City China Digital Media Art Key Laboratory of Sichuan Province Sichuan Conservatory of Music Fuzhou Technology Innovation Center of Intelligent Manufacturing Information System Minjiang University No.200 Xiyuangong Road Fuzhou University Town Fujian Province Fuzhou City China Fujian Province University No.1 Campus New Village Longjiang Street Fujian Province Fuqing City China
Electroencephalogram (EEG) is a nonlinear signal that reflects the physio-logical state of the brain at different times, containing rich information. However, the possible interference during the collection and transm... 详细信息
来源: 评论
Prediction of exosomal piRNAs based on deep learning for sequence embedding with attention mechanism
Prediction of exosomal piRNAs based on deep learning for seq...
收藏 引用
2022 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2022
作者: Liu, Yajun Ding, Yulian Li, Aimin Fei, Rong Guo, Xie Wu, Fangxiang Xi'an University of Technology Shaanxi Key Laboratory for Network Computing and Security Technology Xi'an China University of Saskatchewan Division of Biomedical Engineering Saskatoon Canada Xi'an University of Technology Shaanxi Key Laboratory of Complex System Control and Intelligent Information Processing Xi'an China University of Saskatchewan Division of Biomedical Engineering Department of Computer Science Department of Mechanical Engineering Saskatoon Canada
PIWI-interacting RNAs (piRNAs) are a type of small non-coding RNAs which bind with the PIWI proteins to exert biological effects in various regulatory mechanisms. A growing amount of evidence reveals that exosomal piR... 详细信息
来源: 评论
Deep Q-learning Sampling Based on Advantages  5
Deep Q-learning Sampling Based on Advantages
收藏 引用
5th International Conference on Intelligent Robotics and control Engineering, IRCE 2022
作者: Xie, Ming Ren, Xinrui Yu, Jianbo Shu, Feng Shanghai Engineering Research Center of Ultra-Precision Motion Control and Measurement Academy for Engineering and Technology Fudan University Shanghai China School of Optical-Electrical and Computer Engineering University of Shanghai for Science and Technology Shanghai China School of Microelectronics Fudan University State Key Laboratory of ASIC and System Shanghai200433 China
Deep Q-learning (DQN) has shown recent success on a wide range of complicated sequential decision-making issues, especially in the classic control area. However, in most DQN training, the sampling policies, particular... 详细信息
来源: 评论
Deep Identification of Nonlinear systems in Koopman Form
Deep Identification of Nonlinear Systems in Koopman Form
收藏 引用
IEEE Conference on Decision and control
作者: Lucian Cristian Iacob Gerben Izaak Beintema Maarten Schoukens Roland Tóth Control System Group Eindhoven University of Tehcnology The Netherlands Systems and Control Laboratory Institute for Computer Science and Control Budapest Hungary
The present paper treats the identification of nonlinear dynamical systems using Koopman-based deep state-space encoders. Through this method, the usual drawback of needing to choose a dictionary of lifting functions ... 详细信息
来源: 评论
Identify Influential Nodes in Complex Networks: A K-Orders Entropy-Based Method
SSRN
收藏 引用
SSRN 2023年
作者: Wu, Yali Dong, Ang Ren, Yuanguang Jiang, Qiaoyong Department of Information and Control Engineering Xi’an University of Technology Xi’an710048 China Shaanxi Key Laboratory of Complex System Control and Intelligent Information Processing Xi’an University of Technology Xi’an710048 China The School of Computer Science and Engineering Xi’an University of Technology Xi’an710048 China
Identifying influential nodes is a recognized challenge for the tremendous number of nodes in complex networks. Most of proposed methods detect the influential nodes based on their degree or topological location, whic... 详细信息
来源: 评论